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Preface

The Brazilian Symposium on Bioinformatics (BSB 2007) was held in Angra dos
Reis (Rio de Janeiro), Brazil, August 29-31, 2007, at the Portogalo Suite Hotel.
BSB 2007 was the second BSB symposium, although BSB is a new name for the
Brazilian Workshop on Bioinformatics (WOB). This previous event had three
consecutive editions in 2002 (Gramado, Rio Grande do Sul), 2003 (Macaé, Rio
de Janeiro), and 2004 (Brasilia, Distrito Federal). The change from workshop to
symposium reflects the increased quality and interest of the meeting. BSB 2007
was co-located with the International Workshop on Genomic Databases (IWGD
2007).

For BSB 2007, we had 60 submissions: 36 full papers and 24 extended ab-
stracts, submitted to two tracks, computational biology/bioinformatics and ap-
plications. The second track was created in order to receive and discuss research
work with a biological approach, and so to reinforce the participation of biologists
in the event. These proceedings contain 13 full papers that were accepted, plus
6 extended abstracts. These papers and abstracts were carefully refereed and
selected by an international Program Committee of 48 members, with the help
of some additional reviewers, all listed on the following pages. We believe that
this volume represents a fine contribution to current research in computational
biology and bioinformatics, as well as in molecular biology.

The editors would like to thank: the authors, for submitting their work to the
symposium, and the invited speakers Roded Sharan (Tel-Aviv University, Israel),
Alberto Mart́ın Rivera Dávila (Fundação Oswaldo Cruz, Brazil) and João Paulo
Kitajima (Allelyx Applied Genomics, Brazil); the Program Committee members
and the other reviewers for their support in the review process; the General Chair
Sérgio Lifschitz and the local organizers Daniel Xavier de Sousa, Cristian Tristão
and José Maria Monteiro; the symposium sponsors (see list in this volume); Nalvo
Franco de Almeida Jr., João Carlos Setubal, José Carlos Mombach, Marcelo de
Macedo Bŕıgido, and again Sérgio Lifschitz, members of the Brazilian Computer
Societys (SBC) special committee for computational biology; and Springer for
agreeing to print this volume.

August 2007 Marie-France Sagot
Maria Emilia M. T. Walter
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Marćılio C. P. de Souto (Federal University of Rio Grande do Norte, Brazil)
Osmar Norberto de Souza (Pontifical Catholic University of Rio Grande do Sul,

Brazil)
Guilherme P. Telles (University of São Paulo-São Carlos, Brazil)
Cristina Vieira (INRIA, France)
Sérgio Verjovski-Almeida (University of São Paulo, Brazil)
Martin Vingron (Max Planck Institute, Germany)
Michael Waterman (University of Southern California, USA)
Fernando von Zuben (University of Campinas, Brazil)



Organization IX

Additional Reviewers

Christian Baudet
Markus Bauer
Luciano Digiampietri
Alan Mitchell Durham
Cristina G. Fernandes
Ivan Gesteira Costa Filho
Alexandre Paulo Francisco
Ronaldo Fumio Hashimoto
Dennis Kostka
Alair Pereira do Lago
Helena Cristina Gama Leitão
Ana Carolina Lorena
Simone de Lima Martins
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Marćılio C.P. de Souto

Biological Sequence Comparison Application in Heterogeneous
Environments with Dynamic Programming Algorithms . . . . . . . . . . . . . . . 46

Marcelo N. P. Santana and Alba Cristina M. A. Melo

New EST Trimming Procedure Applied to SUCEST Sequences . . . . . . . . 57
Christian Baudet and Zanoni Dias

A Method for Inferring Biological Functions Using Homologous Genes
Among Three Genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Daniel A.S. Anjos, Gustavo G. Zerlotini, Guilherme A. Pinto,
Maria Emilia M.T. Walter, Marcelo M. Brigido,
Guilherme P. Telles, Carlos Juliano M. Viana, and Nalvo F. Almeida

Validating Gene Clusterings by Selecting Informative Gene Ontology
Terms with Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Ivan G. Costa, Marcilio C.P. de Souto, and Alexander Schliep

An Optimized Distance Function for Comparison of Protein Binding
Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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Automating Molecular Docking with Explicit Receptor 
Flexibility Using Scientific Workflows 

K.S. Machado, E.K. Schroeder, D.D. Ruiz, and O. Norberto de Souza 

Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas - LABIO 
Programa de Pós-Graduação em Ciência da Computação, Faculdade de Informática, PUCRS, 

Porto Alegre, RS, Brasil 
{kmachado,eschroeder}@inf.pucrs.br, 
{duncan,osmar.norberto}@pucrs.br 

Abstract. Computer assisted drug design (CADD) is a process involving the 
execution of many computer programs, ensuring that the ligand binds optimally 
to its receptor. This process is usually executed using shell scripts which input 
parameters assignments and result analyses are complex and time consuming. 
Moreover, receptors and ligands are naturally flexible molecules. In order to 
explicitly model the receptor flexibility during molecular docking experiments, 
we propose to use different receptor conformations derived from a molecular 
dynamics simulation trajectory. This work presents an integrated scientific 
workflow solution aiming at automating molecular docking with explicit 
inclusion of receptor flexibility. Enhydra JAWE and Shark software tools were 
used to model and execute workflows, respectively. To test our approach we 
performed docking experiments with the M. tuberculosis enzyme InhA 
(receptor) and three ligands: NADH, IPCF and TCL. The results illustrate the 
effectiveness of both the proposed workflow and the implementation of the 
docking processes. 

1    Introduction 

One of the most important features of Bioinformatics is the collection, organization 
and interpretation of a large amount of information [1]. To carry that out, different 
computational tools have to be used to manage different data elements in a particular 
sequence of computational steps. Generally these kinds of experiments, called in 
silico, involve a sequential execution of a number of computer programs, where the 
output of one is the input for the next.  

Usually these programs are executed in a one-by-one basis either manually or by 
simple shell scripts specially designed for this purpose. Often, one has also to face 
problems with the heterogeneous and distributed nature of the generated data due to 
particular input/output formats from the available tools [2]. Furthermore, manual 
execution of computational programs or the use of shell scripts to execute them 
usually lead to problems related to computer program diversity of usage, data flow 
recording and process maintenance. An interesting approach to model these 
characteristic problems is by using scientific workflows [3]. These workflows involve 
sequences of analytical steps that can deal with database access, data mining, data 
analysis, and many other possible steps involving computationally intensive jobs. 



2 K.S. Machado et al. 

From Biology we know that macromolecules (receptors), such as proteins, 
enzymes, DNA, and RNA, are not rigid entities in their cellular environment. 
Therefore, it is highly desirable that this flexibility be explicitly considered during a 
computer assisted drug design (CADD) process. One important step of the CADD 
procedure is the molecular docking, where the binding of a small molecule (ligand) to 
its receptor is computationally tested and evaluated.  

Docking experiments can be performed by a number of docking simulation 
software [4]. Most of them can deal with ligand flexibility, but have difficulties in 
handling the receptor flexibility. Those capable of handling receptor flexibility do it 
only in a limited way [5]. In order to overcome this problem and include a more 
realistic representation of the receptor flexibility during docking experiments, we 
considered an ensemble of thousands of receptor conformations, generated by 
molecular dynamics (MD) simulations. For each receptor’s possible conformation, 
one ligand docking experiment has to be performed and analyzed. These steps are 
currently being executed manually, where the appropriate parameters (such as the 
protein and ligand names, the names of the files from the MD trajectory, the number 
of MD snapshots, the docking parameters, etc.) as well as the sequence of execution 
are defined by the user. Consequently, to re-execute a process with different receptor 
and/or ligand, the user would probably face serious difficulties to adjust the input 
parameters and data files. In addition, following and registering all execution 
processes are not simple tasks. 

This article aims to model and automate the molecular docking process so as to 
explicitly include the receptor flexibility, and analyze their results. To accomplish 
that, we developed a scientific workflow, modeled using the JAWE design tool [6]  
executed by the Shark workflow engine [7]. The docking software AutoDock3.05 [4] 
and the PTRAJ module of the AMBER6.0 package [8], herein called PTRAJ only, are 
executed by scripts and computer programs written to perform each one of the 
activities described in the workflow. 

This article is organized as follows: Section 2 presents a review of some basic 
concepts, important to understand this work, like the CADD process, molecular 
docking and MD simulation; Section 3 presents the developed scientific workflow, 
explaining each activity one by one; Section 4 illustrates the application of the 
workflow with a case study, and finally, Section 5 discuss possible improvements to 
the current implementation. 

2    CADD, Molecular Docking, MD Simulation and Scientific 
      Workflows 

2.1   CADD, Molecular Docking and MD Simulation 

New developments in structural and molecular biology and computer simulation tools 
over the past years have made possible a more accurate rational drug design (RDD) 
[9]. RDD involves a set of four steps [10]: 

1. The target receptor (usually a protein) structure is analyzed using its 3D structure 
to identify probable binding sites; 
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2. Based on such probable binding sites, a set of possible ligands is selected and the 
receptor-ligand interactions can be tested and evaluated by simulations using a  
docking software; 

3. The ligands that theoretically had the best interaction score to the receptor are 
selected, bought or synthesized, and then experimentally tested; 

4. Based on the experimental results, a possible inhibitor is detected or the process 
returns to step 1.  

Steps 1 and 2 constitute the CADD process. During the molecular docking (step 2), 
the ligand molecule assumes different orientations and conformations inside a defined 
binding pocket or region of the receptor and their interactions are systematically 
tested and evaluated (Figure 1a). A large number of evaluations has to be performed 
in order to identify the best ligand orientation and conformation inside the binding 
pocket. This information is computed in terms of the free energy of binding (FEB – 
the more negative, the more effective is the ligand-receptor association). 

 

Fig. 1. The docking process. (a) The ligand molecule (in cyan and magenta) in two different 
orientations inside its InhA receptor (gray) binding pocket. (b)  Superposition of five different 
Mycobacterium tuberculosis enzyme InhA conformations (cyan, yellow, magenta, red and 
green), generated by MD simulations [11], representing the flexibility of InhA bound to NADH 
(small molecule in blue). See section 3.1. 

As ligands are usually small molecules, the different conformations they can 
assume inside the binding pocket are easily simulated by the docking software [4]. 
However, the limitation generally occurs when one wants to consider the receptor 
flexibility. There are a number of alternatives to incorporate at least part of the 
receptor mobility, but the use of many receptor structures has been characterized as 
the best alternative [5]. Therefore, one way to simulate the receptor flexibility is to 
use an ensemble of receptor conformations generated by MD simulations [12]. 

According to Sali [13], the studies of biological systems were initially limited to 
observation and interpretation of experimental data. The evolution of experimental 
techniques has allowed a deeper view of the biological processes by accessing the 
structural properties of biological macromolecules. These properties, in turn, can be 
deeply investigated by using the MD simulation methodology which simulates the 
molecular natural movements of biological molecules in atomic detail [14]. The result of 
a MD simulation is a series of instantaneous conformations or snapshots denominated the 
MD simulation trajectory. The InhA enzyme [15] from Mycobacterium tuberculosis has 
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been shown to be considerably flexible [11] and was chosen to be our model of receptor 
(Figure 1b). 

2.2   Scientific Workflows 

According to the Workflow Management Coalition (WFMC) [16], workflow is 
“the automation of a business process, in whole or part, during which documents, 
information or tasks are passed from one participant to another for action, 
according to a set of procedural rules”. Although this definition refers to “business 
process”, workflow is not only employed by business applications. Wainer et al. 
[3] state that workflows can be also classified as ad-hoc workflows and scientific 
workflows.  

Scientific workflows generally gather and merge data from various experiments, 
generating data from a computer model or performing data statistical analysis. In 
addition, scientific workflows can not be completely defined before it starts. While 
some tasks are being executed, one has to decide the next steps after evaluating the 
previous one [17]. Thus, the lack of complete knowledge about the processes in 
scientific applications has implications on modeling scientific workflows. The 
main assumption is that the models are inherently incomplete or change at any 
time [18]. 

As the molecular docking with respect to receptor flexibility is a scientific 
application, composed by a number of different software tools, in the present work we 
employed a scientific workflow management system to integrate modeling and 
execution of docking processes.  

3   The Molecular Docking Workflow Model 

Before the development of this scientific workflow all of the work had to be manually 
performed with FORTRAN computer programs and shell scripts. We developed our 
scientific workflow to model and run the docking processes considering the receptor 
flexibility explicitly, which is not a trivial task in ligand-receptor docking experiments 
[5]. The complexity of the receptor is usually the limiting issue. Receptors contain far 
more atoms than ligands, and therefore a very large number of degrees of freedom 
must be taken in account.  

We adopted the Kua et al. [19] alternative approach to consider the receptor 
flexibility in docking experiments: to perform a series of dockings using, in each one 
of them, one different receptor snapshot. In our work, the receptor snapshots were 
generated by MD simulations [11] with the AMBER6.0 [8] package.  

The flowchart of the developed workflow model is schematically shown in Figure 2. 
The activities in dashed lines correspond to those executed by the user, whilst the ones 
in solid lines are executed by the system without user intervention. The JAWE [6] and 
Shark [7] software tools were used to model and execute the workflow, respectively. 
These software tools are free, and can be used in the Linux environment (as well as 
AMBER6.0 and AutoDock3.05).  
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Fig. 2. Flowchart of the proposed molecular docking workflow model 

3.1   Step Zero – MD Simulation of the Receptor  

The first action in a molecular docking considering the explicit receptor flexibility is 
the execution of a MD simulation of the receptor, from which a series of receptor 
snapshots is generated. This step is called step zero because it is not modeled in 
Figure 2, since it is performed only once for each receptor.  

The InhA enzyme from Mycobacterium tuberculosis has been shown to be 
considerably flexible [11] and was chosen to be our model of receptor (Figure 1b) in 
this work. Its explicit flexibility was obtained from a fully solvated MD simulation 
trajectory generated by the SANDER module of AMBER6.0 [8] as previously 
described [11]. MD data were collected for 3,100 ps (1.0 ps = 10-12s) and 
instantaneous snapshots were saved at every 0.5 ps, in files of 50 ps each. A total of 
6,200 receptor snapshots were generated. 

3.2   First Step – Prepare Receptor Files  

This step has two parts: execution of PTRAJ and selection of snapshots relevant to the 
docking process. This step may not be necessary if the docking experiment only 
employs a single receptor.  

PTRAJ is a AMBER6.0 utility that converts the trajectory of receptor snapshots 
generated by MD simulation into the PDB format [20]. A computer program was 
developed to establish the communication between Shark and PTRAJ. During 
workflow execution, the user must inform some parameters, such as the number of 
receptor amino acid residues and the first and last snapshots to be considered. These 
data, used as input parameters for PTRAJ, are stored into a workspace to be used 
during workflow execution. Thus, the user can easily change any input parameters 
and there is no need to modify individual scripts.  

During the MD simulation, instantaneous snapshots were recorded at every 0.5 ps. 
Consequently, after 3,100 ps of MD simulation, 6,200 snapshots are generated and, 
hence, 6,200 PDB files are generated by PTRAJ. However, consecutive snapshots 
have closely related conformations. In order to trim down the redundancy of 
conformations we picked up snapshots separated by time intervals larger than 0.5ps. 
In our case study (see Section 4) we chose 1ps as the time interval to select snapshots 
and a total of 3100 snapshots were used in the docking experiments. 
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3.3   Second Step – Prepare Ligand File 

This step has two parts. First, the ligand is placed in its initial position within the 
binding pocket of the receptor. Second, the proper ligand file is generated. This step is 
performed only once if the docking experiment employs the same ligand-receptor pair. 

To place the ligand in its initial position within the binding pocket, the ligand PDB 
file and the receptor’s average structure are automatically opened, by Shark, in the 
SwissPDBViewer [21]. The ligand is then manually placed by the user in the receptor 
structure.  

Afterwards, the ligand PDB file needs to be transformed into a PDBQ format [4]. 
A ligand file in MOL2 format needs to be supplied as the input file. This can be 
basically done in two ways: through proprietary software such as MOE [22], or by 
downloading a MOL2 file from freely available public databases of small molecules. 
We developed a computer program that uses such a pre-existing MOL2 file and 
replaces its ligand coordinates for those correctly positioned in the receptor binding 
pocket. The module deftors of AutoDock3.05 software is then used to generate the 
PDBQ file from the MOL2 file. 

3.4   Remainder Steps – Execution of the Docking Experiments 

After the preparation of the receptor and ligand files, the docking experiments can be 
executed (Remainder Steps in Figure 2.). The flowchart in Figure 3 details the 
Execute docking subflow from Figure 2. 

The docking experiments can be executed using the whole MD trajectory or only 
part of it. In the workflow the user is asked to inform the initial and final snapshots to 
be considered and a counter value, which indicates the next experiment to be 
performed (the counter value was introduced to prevent a restart from the beginning 
in case of workflow execution failure). As made for ligand and receptor files 
preparation, computer programs and shell scripts were developed to establish 
communication between the workflow and each of the AutoDock3.05 modules 
(Addsol, Mkgpf3, Mkdpf3, Autogrid and Autodock).  

 

Fig. 3. Flowchart of the subflow Execute docking that executes the docking experiments  

In Figure 3, the activity Parameters concatenation concatenates the counter 
value with execution file names from AutoDock3.05. The activity Receptor 
preparation generates the receptor in the PDBQS format using Addsol. Mkgpf3 
execution generates the “Input.gpf” file, which contains the input parameters for 
Autogrid execution. Mkdpf3 execution, when executed, generates the Autodock 



 Automating Molecular Docking with Explicit Receptor Flexibility 7 

parameters file “Input.dpf”. Then, in Docking input preparation, “Input.dpf” is 
edited within a text editor and the user can easily modify the docking parameters. 
Subsequent executions of the subflow do not need to perform these activities.  

The activity Autogrid execution executes the Autogrid module where the grid 
maps are defined for each ligand atom type. During Autodock execution the 
module Autodock is executed to calculate an estimate of the interaction between 
ligand and receptor in terms of the free energy of binding (FEB). At the end of the 
docking run, an output file is generated. This file contains information about all the 
tested ligand conformations, and the results are organized according to the best final 
docked energy (FEB) and the ligand root mean square deviation (RMSD) from the 
initial position. 

The last activity, Results concatenation, collect the current docking energies 
(FEB) and RMSDs results and stores them in a results’ list. An excerpt of this list is 
shown in Table 1, where each line represents the results of one docking experiment. 
This activity also compresses the Autodock output (to save disk space) and deletes the 
unnecessary files. All computer programs and scientific workflows for flexible 
receptor docking experiments were executed on Pentium III PCs of 1GHz and 256 
MB RAM. 

Table 1. Example of a list of results for the flexible InhA receptor-IPCF docking 

Time 
  (ps) Snapshot RMSD 

   (Å) 
FEB 

(Kcal/mol) 

Autogrid 
Execution 

Time (min.) 

Autodock 
Execution 

Time (min.) 
1 2 6.3 -9.9 4:50.02 10:22.50 
2 4 6.2 -10.2 4:06.81 10:08.61 
... ... ... ... ... ... 

3099 6198 3.9 -9.9 4:39.90 9:41.25 
3100 6200 4.0 -9.7 4:30.58   10:00.94   

4     Case Study  

The validation of the proposed scientific workflow was carried out by performing 
docking experiments with the Mycobacterium tuberculosis enzyme InhA as the 
receptor and one large InhA ligand  (NADH [15]), and two small ones,  IPCF [23] 
and TCL [24]. 

4.1   The M. Tuberculosis Enzyme InhA 

The InhA enzyme from Mycobacterium tuberculosis is the bona-fide target for one of 
the most important drugs (isoniazid) used in tuberculosis treatment. It was shown that 
this enzyme needs a NADH molecule as a cofactor for enzymatic activity. The 
activated isoniazid binds to the NADH molecule inside the receptor binding pocket to 
inhibit its activity [25], leading to mycobacterial death. It was shown that IPCF [23] 
and TCL [24] also interact with InhA, inhibiting its activity. 

Knowing that the InhA enzyme constitutes a flexible receptor [11] and a ligand 
should bind to it in more than one enzyme conformation, and in order to understand 
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these ligands affinities for the binding site, we developed a scientific workflow that 
automates the fully flexible molecular docking study to identify the characteristics of 
those ligand-InhA associations (see Section 3). The ligands molecules (NADH, IPCF 
and TCL) were docked in a number of different InhA (receptor) conformations 
previously generated by MD simulations [11]. 

4.2   Experiments  

We performed three experiments, one for each ligand, to validate our implementation 
of the proposed workflow. The three ligands used in the experiments are shown in 
Figure 4. 

 

Fig. 4. Stick models of the three-dimensional structure of three InhA ligands: (a) NADH, (b) 
IPCF and (c) TCL. The ligands atoms are colored by type: Carbon (gray), Nitrogen (blue), 
Oxygen (red), Hydrogen (cyan), Phosphorus (yellow), Iron (orange), and Chlorine (green). 

The same MD simulation trajectory of the receptor was used in all three 
experiments. Ligand docking to each of the 3,100 receptor snapshots was performed 
by the simulated annealing protocol including 10 runs with 100 cycles each, a total of 
25,000 steps accepted or rejected, with selection of the ligand conformation 
presenting the minimum FEB. All docking processes and results concatenation were 
performed, with no human intervention, by the developed scientific workflow. The 
docking results are reported as in Table 2. 

4.2.1   Docking Experiments with the NADH Ligand 
After the receptor files preparation from the MD simulation snapshots, the NADH 
molecule, a large ligand (Figure 4a) presenting 52 atoms was generated through user 
interaction with the scientific workflow described above. The ligand was initially 
placed inside the receptor binding pocket, and its PDBQ file was prepared. As all 
receptor snapshots were superimposed, the initial ligand position, and therefore its 
PDBQ file, was the same for all 3,100 receptor snapshots considered. 

4.2.2   Docking Experiment with the IPCF Ligand 
The IPCF ligand molecule, containing 28 atoms, was prepared and initially placed in 
the receptor binding pocket as described for the NADH ligand in Section 4.2.1. 
Furthermore, the execution of the first step of the scientific workflow was not 
necessary since the receptor docking files had already been generated for the NADH 
docking.  
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4.2.3   Docking Experiment with the TCL Ligand 
The TCL ligand molecule, with 24 atoms, was prepared as described in Section 4.2.2. 

4.3   Results 

The results summarized in Table 2 illustrate the efficiency of the proposed workflow 
and implementation of the automated molecular docking process.  

Table 2. Results of the automated molecular docking process with flexible InhA receptor-
ligands 

Ligand 
Average 
FEB (-) 

(kcal/mol) 

Total 
Number of 

FEB (-) 

Total 
Numberof 
FEB (+) 

Total 
Not 

Docked 

Average 
RMSD 

(Å) 
NADH -12.9 ±  4.2 2822 278 0 5.3 ± 2.2  
IPCF -9.9  ±  0.6   3041 0 59 5.0 ± 1.4  
TCL -8.8 ±  0.3 2890 0 210 6.9 ±1.9   

 
Analysis of the NADH ligand docking output shows that not every receptor 

conformation leads to a good ligand association. From a total of 3,100 docking 
experiments, 278 presented a positive FEB (Table 2), i.e., a non favorable ligand-
receptor interaction. On the other hand, this experiment has a good average FEB  
(-12.9 ± 4.2 kcal/mol) and an acceptable RMSD value, indicating that the NADH 
ligand remains inside its binding pocket during almost all of the docking process. The 
larger energy standard deviation, compared to the other tested ligands can be 
attributed to the ligand size. It is not easy to fit a bigger ligand in a binding pocket 
without observing some unfavorable interactions at some part of the ligand molecule. 

The IPCF ligand docking to the receptor snapshots presents a good average FEB 
with low standard deviation (-9.9 ± 0.6 kcal/mol), indicating that this ligand binds to 
the receptor in almost all of its tested conformations. From a total of 3,100 docking 
experiments, only 59 did not converge (Table 2). 

Analysis of the TCL ligand docking output list shows a good average FEB with 
low standard deviation (-8,8 ± 0.3 kcal/mol). The average RMSDs (Table 2) are 
higher than for the other ligands. This can be explained by the fact that, often the TCL 
ligand occupies the place originally occupied by the NADH (a natural ligand of the 
InhA receptor). As with the IPCF ligand, 210 docking experiments did not converge 
to a favorable interaction. 

As expected, the InhA natural ligand, the NADH molecule, lead to the best 
docking results (lowest FEB), indicating that the receptor has a better affinity for this 
ligand. However, both IPCF and TCL ligands can also be considered as good ligands, 
as indicated by their FEB values.  

The possibility of an automated docking process with explicit inclusion of the 
receptor flexibility can aid in a more realistic representation of the receptor-ligand 
interactions, and therefore improve the CADD process. Thus, the results above 
validate the developed workflow, turning the molecular docking process with explicit 
consideration of the receptor flexibility easier and more flexible to be executed with 
different receptor-ligand molecules.  
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5   Final Considerations 

In this article we proposed to model and automate the molecular docking process with 
explicit consideration of the receptor flexibility. In order to achieve that, we 
developed a scientific workflow using JAWE and Shark software tools to model and 
execute the flexible docking process, respectively. To illustrate the efficiency of the 
proposed scientific workflow and its implementation we performed three molecular 
docking experiments, using a MD simulation trajectory of the Mycobacterium 
tuberculosis enzyme InhA as a model for the receptor flexibility and three InhA 
ligands: NADH, IPCF and TCL. These experiments showed that the scientific 
workflow efficiently executes all processes in an automated way, making it very easy 
to be executed for different flexible receptor-ligand molecules and by different users.  

As future work we intend to introduce in the workflow a procedure to select 
receptor snapshots based on its binding energy (FEB) to a particular class of ligands. 
Thus, it is not going to be necessary to execute the experiment for all receptor’s 
snapshots, saving processing efforts and, consequently, elapsed time. 
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Abstract. Gene Set Enrichment Analysis (GSEA) is a well-known tech-
nique used for studying groups of functionally related genes and their
correlation with phenotype. This method creates a ranked list of genes,
which is used to calculate an enrichment score. In this work, we introduce
two different metrics for gene ranking in GSEA, namely the Wilcoxon
and the Baumgartner-Weiß-Schindler tests. The advantage of these met-
rics is that they do not assume any particular distribution on the data.
We compared them with the signal-to-noise ratio metric originally pro-
posed by the developers of GSEA on a type 2 diabetes mellitus (DM2)
database. Statistical significance is evaluated by means of false discovery
rate and p-value calculations. Results show that the Baumgartner-Weiß-
Schindler test detects more pathways with statistical significance. One of
them could be related to DM2, according to the literature, but further
research is needed.

Keywords: GSEA, gene ranking, non-parametric statistical tests, sta-
tistical significance, DNA microarrays.

1 Introduction

DNA microarray technology has become a powerful technique that allows re-
searchers to investigate the behaviour of thousands of genes simultaneously.
After processing the information provided by the microchip, it is possible to
study the correlations between the expression or suppression of genes and the
consequent occurrence of certain diseases.

Recent studies suggest that single gene analysis could lead to non-significant
statistical interpretations [5]. Some limitations of this approach are discussed
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in [13]. In order to overcome this, the authors in [5,13] propose a new method
called Gene Set Enrichment Analysis (GSEA), which analyzes co-acting genes
in the same metabolic pathway.

GSEA makes use of a scoring metric to rank all genes from the microarray
into a unique list. After that, a running sum, named Enrichment Score (ES),
is computed for each pathway. The original metric proposed in [5] is the Signal
to Noise Ratio (SNR), which assumes that the probe samples for each gene are
normally distributed. This is a limitation in the sense that it is very common
to find non-Gaussian distributions in microarray experiments. In addition, this
scoring metric is very sensitive to sample outliers which are also very common
in microarray data. However, GSEA is versatile enough to incorporate other
scoring metrics.

In the present work, we propose the use of GSEA in combination with two
metrics based on non-parametric tests to calculate the scores and rank the genes,
namely the Wilcoxon [10] and the Baumgartner-Weiß-Schindler [1] tests. These
metrics provide a score based on ranking tests and no assumptions about the dis-
tributions are made. Therefore they are not affected by the limitations described
above. These metrics have already been used in [7], in the context of detection
of differentially expressed genes from microarray data. To the best of the au-
thors’ knowledge, the combination of GSEA and non-parametric scoring metrics
has not been proposed in the literature before for the purposes of enrichment
analysis of gene sets.

The computations involved in this work were performed resorting to a Java
based software package developed by the authors. Several databases supported
at NCBI1 were also used for consulting.

The rest of the paper is organized as follows. In section 2 the GSEA method is
briefly described. The different scoring metrics used in the paper are presented
in section 3. The statistical significance procedure implemented in this work is
detailed in section 4. In section 5 the dataset used in the experiments is described.
The results are presented and discussed in section 6. Finally, some conclusions
are drawn in section 7.

2 Gene Set Enrichment Analysis (GSEA)

GSEA is a method developed to analyze the statistical significance and the cor-
relation of a gene set with the phenotype. This idea was introduced by Mootha
et al. in 2003 [5] and then improved and tested on different datasets by Subra-
manian et al. in 2005 [13], where it is described in more detail. In the present
work the latter approach was implemented and extended to include the use of
non-parametric scoring tests.

First, GSEA ranks all N genes in a global list using a scoring metric which
expresses the correlation between each gene gi and the phenotype (see section 3).

1 NCBI: National Center for Biotechnology Information, Bethesda, MD 20894
(http://www.ncbi.nlm.nih.gov/)
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Given a gene set G of size NG, the ES for G is calculated as

ES(G) = max
1≤i≤N

|Ph(G, i) − Pm(G, i)| × sign
(

max
1≤i≤N

Ph(G, i) − Pm(G, i)
)

(1)

where

Ph(G, i) =
∑

gi∈G,j≤i

⎛
⎜⎜⎝ |mj |w∑

gi∈G

|mj |w

⎞
⎟⎟⎠ (2)

is the fraction of genes in G up to position i in the ranked list (“hits”) weighted
by their correlation, and

Pm(G, i) =
∑

gi∈G,j≤i

1
N − NG

(3)

is the fraction of genes not in G up to position i in the ranked list (“misses”).
Here, mj represents the correlation of gi with the phenotype and w is a constant.

The ES(G) in (1) is then the maximum deviation from zero of the difference
between Ph(G) and Pm(G). If w �= 0, the sums in (1) are weighted by mj to
the power w. In this case the genes that are located at the top or bottom of
the ranked list are enhanced, while those others positioned in the middle (low
correlation with the phenotype) have a weaker contribution to the ES(G).

3 Scoring Metrics

Scoring metrics are used by GSEA to rank the genes into a global list according
to their correlation with the phenotype’s class. The original metric proposed by
GSEA is the SNR (see section 3.1). In the present work we propose two other
alternatives, namely Wilcoxon and Baumgartner-Weiß-Schindler tests, which are
described in sections 3.2 and 3.3, respectively.

3.1 Signal-to-Noise-Ratio (SNR)

In the context of scoring genes, the SNR is defined as the difference in means
of the probe samples for each phenotype’s class divided by the sum of their
standard deviations [2,11],

SNR =
(μ0 − μ1)
(σ0 + σ1)

. (4)

Manoli et al. [4] introduced a variation in the score metric by computing the
absolute value of the numerator in (4),

|SNR| =
|(μ0 − μ1)|
(σ0 + σ1)

. (5)
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The use of absolute values causes both genes having the highest positive and
negative correlations with phenotype to be located at the top of the ranked list.

3.2 Wilcoxon Rank Sum Test

The Wilcoxon Rank Sum non-parametric test (hereafter denoted as W test) is
applicable when data coming from two independent samples can be converted
to ordinal ranks. Despite the fact that this conversion causes some loss of infor-
mation, this method has the strength that does not make any assumption about
the probability distribution from which the samples are taken.

Very commonly, microarray experiments have a large number of outliers and
normality assumptions can not be made [3]. The W test can still be applied
under these conditions, where the t-test is not applicable because of its strong
parametric assumptions. The reader is referred to [10] for a more extensive de-
scription of this test.

The method makes the assumption that the underlying sample distributions
have the same shape (not necessarily normal), except for the median value. The
null hypothesis states that the medians from the two populations are the same,
while the alternative hypothesis states that they are different.

The score is calculated for each gene by arranging the expression values of all
probes from both phenotype classes in non-decreasing order. Then, each one of
the Np probes is assigned a rank (Ri) from 1 to Np. The Wilcoxon statistic is
computed next as the sum of the N0 ranks for the first class, as shown in (6).

W =
N0∑
i=1

Ri. (6)

3.3 Baumgartner-Weiß-Schindler Test

The Baumgartner-Weiß-Schindler non-parametric test (hereafter denoted as
BWS test) makes the same assumptions about the samples as the W test does.
However, it has probed to be less conservative and to yield better results. [6] The
reader is referred to [1] for further details about this test. Neuhäuser and Senske
[7] successfully applied this test for the detection of differentially expressed genes.

The distribution functions underlying the two samples are assumed to be
identical except for a shift in their locations, i.e.: F (x) = G(x − θ), for every x
and −∞ < θ < +∞. The null hypothesis states that θ is null. The alternative
hypothesis states that θ is not null.

The BWS statistic is computed as follows

BWS =
(B0 + B1)

2
, (7)
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with

B0 =
1

N0

N0∑
i=1

(Ri
0 − (N1+N0)

N0
.i)2

i
(N0+1) .(1 − i

(N0+1) ).
N1.(N1+N0)

N0

, (8)

B1 =
1

N1

N1∑
j=1

(Rj
1 − (N1+N0)

N1
.j)2

j
(N1+1) .(1 − j

(N1+1) ).
N0.(N1+N0)

N1

, (9)

where N0 and N1 are the sample sizes for classes 0 and 1, respectively, and Ri
0

and Rj
1 are the Wilcoxon ranks for the i-th and j-th probes for classes 0 and 1,

respectively.

4 Statistical Significance Analysis

The GSEA method is implemented using the four scoring metrics described in
section 3, i.e., SNR, |SNR|, W test and BWS test. As a result four different
values of the ES for each gene set G are computed. The statistical significance
is then assessed by means of the nominal p-value calculation and multiple hy-
pothesis testing, as described in [13].

A randomization test was implemented using 1000 uniformly distributed ran-
dom permutations of the class labels and recalculating the ES values each time,
in order to generate a null distribution of the ES. The nominal p-values were then
computed as the ratio between the observed ES and the corresponding positive
or negative part, depending on the sign of the ES, of the null distribution.

False Discovery Rate (FDR) calculation [12] was employed to assess multiple
hypothesis testing. It was achieved by first normalizing the ES(G) by the total
size of the set obtaining the normalized enrichment score (NES(G)). The null
distribution was also computed for the NES(G). Then, the FDR was calculated
by comparing the tails of the observed NES(G) and its null distribution. The
FDR value represents the probability for a given NES(G) of being a false
positive. The procedure is explained in more detail in [13].

5 Dataset Description

The normalized dataset, as well as the set of 149 curated pathways, which we
used in this work is the one provided by [5].

A reduced version of the DNA microarray dataset is available for public down-
load from the Broad Institute Website2. It consists of 34 transcriptional profiles
from 17 patients affected with Type 2 Diabetes Mellitus (DM2) and 17 indi-
viduals with Normal Glucose Tolerance (NGT). The total number of genes is
22283.

The 149 gene sets are comprised by 113 groups of genes involved in metabolic
pathways and 36 groups of GNF mouse expression clusters. Eleven out of the
2 http://www.broad.mit.edu/gsea/resources/datasets index.html
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113 pathways were manually curated by Mootha and co-workers and reported
in [5] and they correspond to: oxidative phosphorylation, glycolysis, glycogen
metabolism, pyruvate metabolism, ketogenesis, reactive oxygen species home-
ostasis, insulin signaling, gluconeogenesis, free fatty acid metabolism, mitochon-
dria, and Krebs cycle.

6 Discussion

The motivation of this work is to test different metrics in order to obtain new
gene sets that could eventually be biologically related to the disease. GSEA was
implemented using each one of the four scoring metrics described in section 3,
computing the ES, NES, p-value and FDR-q-value for each one of the 149
pathways.

Figure 1 shows the behaviour of the newly introduced statistical metrics com-
pared with the SNR metric used by Mootha et al. [5].

The different plots in Figure 1 show the normalized index of the genes ordered
by one of the newly tested metrics (i.e.: |SNR|, W and BWS scores) as a
function of the normalized index of the same genes ordered by SNR. It is easy
to see that all four metrics yield different rankings.

As noted by Subramanian et al. [13], there is a bias in the bimodal ES distrib-
ution as a result of an unequal representation of the phenotype by the gene sets.
For each plot in Figure 2 a null hypothesis distribution was generated by taking
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Fig. 1. Comparison of different metrics. a. |SNR| metric vs. SNR metric. b. BWS
metric vs. SNR metric. c. W metric vs. SNR metric.
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Fig. 2. Distribution of observed (dotted line) and null hypothesis (solid line) values for
all metrics. a. SNR metric. b. |SNR| metric. c. W metric. d. BWS metric.

1000 random permutations of the phenotype using the C2 symbol database for
pathways and the collapsed Diabetes database [13]. As expected, in all cases a
bimodal distribution was obtained. Positive and negative values were separately
normalized to correct the bias in the distribution, as well as the observed dis-
tribution. As it can be noticed from all plots for both distributions, null and
alternative hypothesis have a very similar shape.

After performing the enrichment score calculation and the statistical signifi-
cance analysis, the gene sets that simultaneously verify the constraints: i) FDR-
q-value less than 0.25 and ii) p-value less than 0.05, were retained. We chose
the standard 0.25 and 0.05 thresholds for the FDR-q-value and p-value, respec-
tively, following [13,5]. The lists of significant pathways detected in each case are
presented in Table 1 to Table 4.

It is noticeable that in the four situations the most significant gene set
corresponds to the one related to oxidative phosphorylation (OXPHOS-HG-
U133A-probes, hereafter denoted as OXPHOS), which is also the only signif-
icant pathway indicated by using the SNR, |SNR| and W scoring metrics. It
agrees with the results obtained by Mootha et al. [5], who also obtained the same
significant pathway, although not through FDR-q-value analysis.
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Table 1. Pathways with FDR q-value< 0.25 and nominal p-value< 0.05, using the
signal-to-noise ratio scoring metric and a weight w = 0 in (2)

SNR

Pathway Nominal p-value FDR q-value
OXPHOS-HG-U133A-probes 0.0043 0.0533

Table 2. Pathways with FDR q-value< 0.25 and nominal p-value< 0.05, using the
absolute signal-to-noise ratio scoring metric and a weight w = 0 in (2)

|SNR|

Pathway Nominal p-value FDR q-value
OXPHOS-HG-U133A-probes 0.0304 0.1933

Table 3. Pathways with FDR q-value< 0.25 and nominal p-value< 0.05, using the
Wilcoxon rank sum scoring metric and a weight w = 0 in (2)

Wilcoxon Rank Sum
Pathway Nominal p-value FDR q-value

OXPHOS-HG-U133A-probes 0.0200 0.1467

Table 4. Pathways with FDR q-value< 0.25 and nominal p-value< 0.05, using the
Baumgartner-Weiß-Schindler scoring metric and a weight w = 0 in (2)

Baumgartner-Weiß-Schindler metric
Pathway Nominal p-value FDR q-value

OXPHOS-HG-U133A-probes 0.0085 0.0485
FA-HG-U133A-probes 0.0020 0.1152

mitochondr-HG-U133A-probes 0.0102 0.1782
human-mitoDB-6-2002-HG-U133A-probes 0.0324 0.2090

In our work, however, the BWS metric additionally finds three more sig-
nificant gene sets. They correspond to FA-HG-U133A-probes, mitochondr-HG-
U133A-probes and human-mitoDB-6-2002-HG-U133A-probes (see Table 4). The
latter two are also indicated by Mootha et al. [5] to be the two gene sets with
the highest enrichments after OXPHOS, even though in their work they do not
label them as significant based on their statistical analysis. They notice that
these pathways overlap OXPHOS, and thus their enrichment could be explained
because of the genes they share. This is not the case for the FA-HG-U133A-
probes, since this gene set does not overlap OXPHOS at all. It has partial overlap
with mitochondr-HG-U133A-probes and human-mitoDB-6-2002-HG-U133A-
probes (88.24% and 97.06%, respectively).

FA-HG-U133A-probes gene set was internally curated by Mootha and
co-authors in [5] and is composed by genes related to free fatty acid metabolism.
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In the literature, fatty acid metabolism has been considered importantly related
to oxidative phosphorylation processes. Petersen et al. [8] conclude that insulin
resistance in patients with type 2 diabetes may be related with dysregulation of
intramyocellular fatty acid metabolism, probably caused by inherited defects in
oxidative phosphorylation at the mitochondria. Rufer et al. [9] investigated the
downregulation activity of the carnitine palmitoyltransferase (CPT) system in the
development of novel drugs for diabetes treatment. CPT1A and CPT2 genes are
involved in the fatty acid metabolism and are members of this pathway. Addition-
ally, Wood [14] states that the presence of a large amount of fatty acids and a low
fatty acid oxidation may cause insulin resistance and, eventually, type 2 diabetes
mellitus.

The use of the GSEA method in combination with the BWS metric resulted
in the detection of three extra significant gene sets. The studies referenced above
suggest the biological association between one of them, namely the free fatty acid
metabolism pathway, with type 2 diabetes mellitus. The other two extra gene
sets detected, mitochondr-HG-U133A-probes and human-mitoDB-6-2002-HG-
U133A-probes could be explained on the basis of their overlap with OXPHOS
and FA-HG-U133A-probes. However this is not the case for FA-HG-U133A-
probes, which has no overlap with OXPHOS and is ranked second in the highest
significant pathway list. Further research is needed to confirm the hypothesis
of the link between the occurrence of type 2 diabetes and variations on the
differential expression of the fatty acid metabolism gene set.

7 Concluding Remarks

In this paper the use of two non-parametric scoring metrics, namely Wilcoxon
and Baumgartner-Weiß-Schindler tests, in combination with GSEA is proposed
for the study of functionally related genes and their correlation with type 2
diabetes mellitus. The statistical analysis (FDR-q-value and p-value) with the
different metrics agreed in detecting OXPHOS as the most significant pathway,
confirming previous studies. Additionally, the use of the Baumgartner-Weiß-
Schindler metric allowed to detect three extra gene sets apart from OXPHOS,
as the next most significant pathways. In this sense this metric seems to be more
powerful than the standard signal-to-noise-ratio. The second in significance level
gene set (the free fatty acid metabolism group) has been indicated as possibly
related to the disease in previous biological studies available from the literature.
Further biological research is needed to experimentally confirm this association.
The use of the Baumgartner-Weiß-Schindler metric in combination with GSEA
seems to be a less conservative and more powerful technique for the purposes of
identifying differentially expressed gene sets.
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Abstract. The DNA motif finding problem is of great relevance in mole-
cular biology. Weak signals that mark transcription factor binding sites
involved in gene regulation are considered to be challenging to find. These
signals (motifs) consist of a short string of unknown length that can be
located anywhere in the gene promoter region. Therefore, the problem
consists on discovering short, conserved sites in genomic DNA without
knowing, a priori, the length nor the chemical composition of the site,
turning the original problem into a combinatorial one, where computa-
tional tools can be applied to find the solution. Pevzner and Sze [7],
studied a precise combinatorial formulation of this problem, called the
planted motif problem, which is of particular interest because it is a chal-
lenging model for commonly used motif-finding algorithms [15]. In this
work, we analyze two different encoding schemes for genetic algorithms
to solve the planted motif finding problem. One representation encodes
the initial position for the motif occurrences at each sequence, and the
other encodes a candidate motif. We test the performance of both al-
gorithms on a set of planted motif instances. Preliminary experimental
results show a promising superior performance of the algorithm encoding
the candidate motif over the more standard position based scheme.

1 Introduction

The Motif Finding Problem can be defined as to find short conserved sites in
DNA sequences without knowing, a priori, the length nor the bases that compose
them. Until now, algorithms have been developed to identify motifs that appear
in several sequences. In this case, instead of looking for a single site in one
DNA sequence, they look for several sites containing substrings that are very
alike (some bases may change) taking several DNA sequences. There are two
categories for this kind of algorithms. The first one, that can be called ”multiple
genes, one species”, assumes that a single motif (degenerated) is embedded in
some or all DNA sequences and finds a consensus and its occurrences. The
second one, called ”single gene multiple species”, takes several orthologous DNA
sequences (same gene in different species) and finds well conserved sites.

M.-F. Sagot and M.E.M.T. Walter (Eds.): BSB 2007, LNBI 4643, pp. 22–33, 2007.
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We can identify three cases of the motif finding problem [9]. In the first case,
the motif appears in each of the input DNA sequences with some mutations.
In the second case, the motif appears only in some sequences presenting some
mutations, and, in the third case, more than one occurrence of the same mo-
tif can appear in a single sequence presenting different mutations. Most of the
algorithms are designed to have a good performance for the first model, never-
theless, they are tested with the other two, showing, most of the time, a lower
performance.

Some of the existing algorithms like Gibbs Sampler [11] and MEME [1] are
used in practice to solve the motif finding problem, although, for planted motifs,
Random Projections [4] and Pattern Branching [15], among others, get better
results.

Evolutionary algorithms have also been proposed to deal with this problem.
However, a comparison of the two most obvious encoding schemes has been
scarce [21]. It will be interesting to know which scheme works better for which
variants of the problem. The work we present here is a small step towards this
direction.

The remainder of the paper is organized as follows. Section 2 states the prob-
lem we are going to solve and present a brief description of previous work on
the subject. Section 3 describes the proposed algorithm along with the standard
genetic algorithm. Section 4 discuss the experimental setup and presents the
preliminary results. Section 5 presents the conclusions and some ideas for future
research.

2 Problem Definition

To define the Motif Finding Problem, we will start by defining what a string
is. A string S is an ordered list of characters written contiguously from left to
right. For any string S, S[i..j] is the (contiguous) substring of S that starts at
position i and ends at position j of S [7].

A motif is a substring s of length l that can or cannot appear in a given string
S. An occurrence of a (l, d)-motif is a substring s of length l that differs in at
most d characters from the motif.

In the Planted Motif Finding Problem [14], each input string Si (i ∈ {1, 2, ...,
N}) contains a planted occurrence of an (l, d)-motif, having an initial position
j ∈ {1, 2, ..., T − l + 1}, where T is the length of the string Si and l the length
of the motif and of its occurrences. We assume, without lost of generality, that
all strings Si are of the same length.

The objective of the planted motif problem is to find all the occurrences of
the (l, d)-motifs that appear in each of the N input strings without knowing, a
priori, the motif.

We will now formally define the Planted Motif Finding Problem as the fol-
lowing input/output requirements.

Input: A set of N strings {S1, S2, ..., SN} each of length T over the alphabet
{a, c, g, t}, where each string contains a planted occurrence of the motif. The
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length of the motif (l) and the maximum number d of possible mutations in its
occurrences.
Output: A set P of initial positions {p1, p2, ..., pN} that correspond to the first
character of each of the N occurrences that where found. Those N occurrences
of the inserted (l, d)-motif. Each pi ∈ {1, 2, · · · , T − l + 1} ∪ {0}, with pi = 0
means that sequence Si contains no occurrences of the motif.

Notice that this problem was already implicitly defined in [17]. Although
the planted motif problem was not explicitly defined, the author introduced two
variants of the motif finding problem and, one of them includes the motif finding
problem as it is defined above.

The complexity of this problem and its variants (all NP-Hard [23]) has moti-
vated the development of efficient heuristics to deal with them.

2.1 Previous Work

This problem has been dealt with different approaches. Some of the existing
algorithms like CONSENSUS [8], Gibbs [11], and MEME [1] are local search
based algorithms. Some others [2], [3], [19], use enumeration strategies. In [17]
two algorithms based on the construction of suffix trees are proposed. Both time
and space complexity bounds are improved in this paper comparing to Sagot et
al. [18] and to the ones produced by Waterman et al. [22].

In [4] an algorithm based on random projections of the motif is proposed.
Constructed under the planted motif model, this algorithm obtains a good per-
formance compared with the commonly used methods like Gibbs [11] and MEME
[1]. In [23] the Motif Finding Problem is defined as to find a local alignment of
multiple sequences without gaps using the sum-of-pairs scoring scheme and the
filogenetic distance. Combinatorial techniques like branch pruning and linear
programming are used to solve the problem.

In [15] an algorithm based on the planted motif model, looking for the planted
motif instead of its occurrences, is proposed. The main idea of this approach,
known as Pattern Branching, is that if we have a real occurrence, then we can
obtain the original motif by changing, in this occurrence, exactly d bases. So if we
analyze all the possible substrings in all DNA strings, we will have, at the end,
the best motif that minimizes a given score. The second encoding we propose
here is based on some ideas of this algorithm. Pattern Branching [15] obtains
solutions that are comparable to the ones obtained by Random Projections [4],
with a notorious improvement in the computation time.

Tracing back solutions in the evolutionary algorithms context, we found sev-
eral approaches. The application of genetic algorithms for the motif finding prob-
lem was first introduced in [21]. Two algorithms were proposed. The first one,
GA1, is based on the position weight matrix, where each chromosome represents
an alignment of all sequences. The algorithm tries to find all alignments, which
maximize the sum of the maximum frequencies of nucleotides at each position
of the alignment over the motif length. In the second algorithm, GA2, the chro-
mosome represents a candidate consensus string of length l and the algorithm
tries to maximize the score of this consensus string with respect to all sequences
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in the data set. Both algorithms were tested with synthetic data and some real
samples (in the case of GA2). This paper concludes that GA2 is faster, because
the search space is smaller, but no computation time results are provided nor
compared with other state-of-the-art algorithms. Since GA2 has a higher prob-
ability of finding correct motifs, it is concluded that it is applicable for signal
identification in real biological data. Basically, this work pretends to determine in
general if genetic algorithms are suitables for the motif finding problem studying
the probabilities of the algorithms to identify correct motifs. A similar study is
presented in our present work, but our main goal is to determine which scheme,
position based or motif based, works better for each of the motif finding problem
variants. To begin in this direction, here we focus our experiments in the planted
motif problem defined in [14] and compare results with Gibbs Sampler [11].

In [5], a standard GA is proposed to deal with the problem, here the represen-
tation is given by a vector of initial positions, corresponding to each occurrence
of the motif. The results are compared with the ones produced by Gibbs Sampler
[11], BioProspector [13], MEME [1], Consensus [8] and AlignACE [16] on a small
set of real cases with competitive results. In [12] a more complicated approach
is adopted, each individual is encoded as a set of candidate motif patterns gen-
erated at random, one motif pattern per sequence. The evaluation function for a
single sequence is computed as the best matching percentage of all subsequences
in that sequence, and the overall fitness score is the summation of individual fit-
ness scores for all sequences. Results are compared with Gibbs [11] and MEME
[1], showing a superior performance over them. In [10] GAMOT algorithm is
proposed and applied to the motif planted problem. This algorithm makes a fast
search of candidate motifs to take as initial population before the genetic algo-
rithm begins. GAMOT is tested only with synthetic data and is compared with
Random Projections, GA1, GA2 and some exhaustive search algorithms, achiev-
ing better results in computation time (when comparing to the exact methods)
and quality of solutions and computation time when comparing to the other
heuristics.

3 The Algorithms

The ultimate goal here is to see what level of performance can be achieved
with the evolutionary approach. The first step in that direction is to compare
the most obvious encoding schemes to see which is more appropriate for the
problem. One encoding will be to define an individual as a vector of initial
positions for candidate occurrences of the motif. This approach is similar to
the one adopted in [5]. The other encoding will define a chromosome to be the
motif itself, resembling other approaches which are not based on the evolutionary
paradigm. In the following sections we explain in detail both encodings.

3.1 Position Based Encoding Genetic Algorithm: PbGA

To implement the algorithm, the representation of the individual and the genetic
operators (crossover and mutation) must be defined. Since the solution to this
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Fig. 1. Aligning of five occurrences of (l, d)-motifs given by individual i = [3, 29, 147,
12, 87]

problem is given by a set of initial positions for each motif occurrence on each
string Si, we will define our individual as i = [p1, p2, ..., pN ], where pj represents
the initial position of the occurrence found in the string Sj . The fitness of the
individual is calculated aligning the N occurrences it represents and adding for
each column the character that is repeated the most. Let us assume we are
looking for a motif of length five (l = 5). Now we will compute the fitness of an
example individual given by i = [3, 29, 147, 12, 87]. To do this we search for the
length l = 5 string starting at position 3 in S1, the one starting at position 29
in S2, and so on. Let us assume that after aligning all length l(= 5) substrings
defined by individual i we have the result shown in Figure 1.

We see that, in the first column, character a has the largest number of occur-
rences (4), so the score for this column is 4. Following the same procedure we
obtain the total score as Score(i) = 4 + 5 + 2 + 4 + 4 = 19.

In this case, we will maximize the score (which we adopted as fitness) of
the individuals through the generations. It is not hard to see that the cost for
computing this score is O(l ∗ N). Notice that the fitness used in [5] is different
but considers the same information, i.e. the number of characters occurrences in
each column. Once the individual representation is defined, we will explain the
genetic operators. The one point crossover [6] of two individuals is performed as
follows:

Given two parents P1 and P2 as:

P1 = [p11, p12,...,p1N ], P2 = [p21, p22, ..., p2N ],

we choose a crossover point at random, in such a way that the new individual
(child1) will inherit all positions to the left of the crossover point from P1, and the
positions to the right from P2. The following example illustrates this crossover
operator:

P1 =23 309 276 12 513 , P2 =506 281 105 33 447 child1 =23 309 105 33 447

In this example, the crossover point is chosen between the second and third
position, so the first two positions are copied from the first parent and the other
three from the second.

To mutate an individual, we chose one of the N initial positions at random
and replace it with another position generated also at random, in the range
between 1 and T − l + 1. The resulting pseudocode for the procedures is given
in Algorithm 1. Notice that generational replacement is used as the survival
selection strategy.
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Algorithm 1. PbGA

Input: Number of strings (N), string length (T), motif length
(l), number of mutated elements (d), mutation rate (Pm),
crossover rate (Pc), Population Size (PopSize), tournament size
(J), the maximum number of iterations without changes in the
fitness of the best individual (Max Iter No Change).
Output: A set of positions {p1, p2, · · · , pN} and its corresponding
score.
1 Initialize PopSize individuals with random initial positions
2 Evaluate the fitness of the PopSize individuals and the best

individual is taken as the super individual.
3 While the number of generations without changes in the fitness

is less than Max Iter No Change, Do:
4 For i=1 to PopSize
5 Choose J individuals to participate in a match

and the winner will be Parent1
6 Choose J individuals to participate in a match

and the winner will be Parent2.
7 Perform crossover between Parent1 and Parent2 with

probability Pc to obtain a new individual
8 Apply mutation to each new individual with

probability Pm.
9 Replace the actual population with the new PopSize

individuals
10 Evaluate the fitness of the new population to

choose the best individual and compare it
with the old one, then keep the best.

11 End While

3.2 Motif Based Encoding Genetic Algorithm: MbGA

A clear limitation with the initial positions based representation is that it is
not trivial to deal with repetitions of occurrences in one or more sequences,
but specially to deal with the case where a given sequence does not contain an
occurrence at all. To improve the performance of the position based encoding, we
borrow some ideas from the Pattern Branching Algorithm (PBA) [15]. The main
ideas with the PBA are: to work with the motif itself not with the positions, to
compute the quality of solution as a measure of the Hamming distance between
the candidate motif and the closest length l substring in each sequence. We
take in our MbGA these two ideas. To do this, we change the representation of
the individual, in such a way that it represents the motif (as in [10] and GA2
[21]), not the position of each occurrence as in [5], nor each motif occurrence
as in [12]. If we use the position based approach the search space has a size of
(T − l + 1)N . It is clear that this size increases exponentially with the number
of sequences N . If we choose the motif based representation the search space
size is still exponential, 4l, although independent of the number and length of
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sequences, it grows exponentially with the motif length. However, in the planted
motif problems the number and length of sequences is a real issue, for details see
[4]. Notice that the difference in size of the search spaces will probably require
a bigger population size for the position based encoding.

In the following example we see an individual which represents a candidate
motif of length l = 10:

i =a a g t t c a c c g .

Notice that this representation has no limitations to deal with repeats or with
the absence of occurrences in a given sequence as the PbGA does.

To calculate the fitness of an individual we use the concept of total distance
[15]. In order to compute this distance we first recall some basic definitions. The
Hamming distance d(s1, s2) between two substrings of length l is the number of
characters in which they differ. For each string Sj , let d(i, Sj) = min{d(i, p)|p ∈
Sj}, where p denotes a substring of length l and i the candidate motif. Then the
total distance from i to the N strings is given by d(i, S) =

∑N
j=1 d(i, Sj). In this

case we need to minimize this distance, so at the end of the algorithm, those who
have survived will represent a candidate motif for the one that was originally
implanted. It is not hard to see that the cost for evaluating this objective function
is O(T ∗ l ∗ N). This evaluation cost is more expensive than the one in PbGA
which is only O(l ∗ N).

The genetic operators for this algorithm are similar to the ones used in the
standard PbGA. For the recombination operator, we choose a crossover point
at random. For the mutation, we choose one of the l characters at random
and replace it with another one, also generated at random from the alphabet
{a,c,g,t}, where each character is equally likely to be selected.

The resulting algorithm structure is similar to the one introduced in
Algorithm 1, with the difference in the representation and the objective function
for which we want to minimize the total distance instead of maximizing the total
score. The output for this algorithm is a candidate motif of length l.

In order to compare this approach with the PbGA we have designed a set of
computational experiments which are described in the next section.

4 Experimental Setup and Results

To test both algorithms, we generated (l, d)-planted motif instances of (10,2),
(10,3), (11,2), (11,3), (12,3), (12,4), (15,4), (16,5), (18,6), (20,7), (30,11) and
(40,15) as follows: first, a motif M of length l is generated by choosing l bases
at random. Second, N = 20 occurrences of the motif are created by randomly
choosing d positions per occurrence (without replacement) and replacing the
base by a randomly chosen one. Third, we construct N background sequences
each of length T = 600 selecting the bases at random. Finally, we assign each
occurrence to a random position in a background sequence, one occurrence per
sequence.
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After a non extensive trial and error tuning process, we have selected the algo-
rithms’ parameters as follows. For the PbGA we set the population size to 1, 000
individuals, selecting three individuals for each tournament (J = 3), and using a
mutation probability of Pm = 0.4 and a crossover probability of Pc = 1.0. In the
MbGA we set the population size also to 1, 000 individuals in an attempt to equal-
ize the computation times, define a tournament size of J = 3, and set the mutation
and crossover probabilities as in the PbGA. The parameter Max Iter No Change
equals 100 for the PbGA and 15 for the MbGA. Both algorithms are run 30 times
for each instance. These algorithms were implemented in C++ and compiled with
g++. We run both algorithms over all instances on a PC with AMD Athlon 3000+
processor with 512MB in RAM, with Linux kernel 2.6.12 − 9amd64.

Since the MbGA generates a candidate motif and the PbGA outputs candidate
positions for occurrences of the motif on each sequence Si, we need to generate a
candidate motif for the PbGA or a set of candidate positions for the MbGA. We
decided to adopt the second option. The way to generate the candidate positions
is just by taking the candidate motif generated by MbGA and selecting the
closest (Hamming distance) length l substring on each sequence Si. Then the
starting position of each of these substrings is given as output. Once this is done
the corresponding score is computed.

Table 1 compares the average solution quality (total score) of both algorithms
for all instances. The first column indicates the specific instance name, the sec-
ond column gives the average objective function values for the PbGA, the third
column the average objective function for the MbGA, and columns third and
fourth their respective standard deviations. Table 2 compares both average com-
putation times and their respective standard deviations. The values shown in
parenthesis are the best in 30 runs, and the ones in bold are the best found for
the respective instance, which are, at the same time, the optimal solution.

Table 1. Comparison of average total score (F ) and their corresponding standard
deviation. PbGA stands for Position Based Genetic Algorithm and MbGA for Motif
Based Genetic Algorithm. The score in parenthesis is the best score found by the
algorithm in 30 runs, and the ones in bold are the score of the best solution found that
corresponds to the optimum.

Instance(l, d) FPbGA FMbGA S.D. PbGA S.D. MbGA

(10,2) 144.07(151) 157.8(166) 3.37 3.6

(11,2) 153.37(160) 178.47(193) 3.47 8.41

(12,3) 167.07(201) 196.33(210) 7.97 6.16

(15,4) 195.97(232) 239.33(250) 7.69 8.55

(16,5) 204.18(211) 240.57(254) 4.68 10.6

The results in Table 1 show that the motif based algorithm obtains most of the
time, for the instance (10, 2), solutions close to the optimum. This means that the
motif found at each execution differs from the real motif in one or two bases only.
The position based algorithm was not able to find the optimal solution in neither of
the 30 executions. In the second instancewe can see similar results as in thefirst one.
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Table 2. Computation time average (T ) and its standard deviation for the PbGA and
the MbGA algorithms

case(l, d) TPbGA TMbGA S.D. PbGA S.D. MbGA

(10,2) 11.1 81.67 2.58 17.95

(11,2) 11.77 91.8 3.05 21.57

(12,3) 12.4 131.5 2.34 28.92

(15,4) 31.1 155.17 10.66 55.55

(16,5) 12.39 335.1 2.35 95.52

Table 3. Comparison of average total score (F ) for SGA allowed extra time, the
PbGA, and the Gibbs sampler. The score in parenthesis is the best score found by the
algorithms in 30 runs, and the ones in bold are the score of the best solution found.

instance(l, d) FPbGA FMbGA Gibbs Sampler

(10,2) 147.1(166) 157.8(166) 160

(10,3) 146.17(151) 155.57(158) 144

(11,2) 155.63(159) 178.47(193) 193
(11,3) 155.97(173) 173.67(176) 176
(12,3) 167.6(210) 196.33(210) 210
(12,4) 166(172) 178.2(184) 184
(15,4) 197.3(233) 239.33(250) 250
(16,5) 207.67(246) 240.57(254) 254
(18,6) 221.87(231) 238.53(279) 209

(20,7) 242.03(249) 265.5(300) 296

(30,11) 335.97(407) 375.93(454) 314

(40,15) 490.5(613) 584.13(613) 613

Table 4. Comparison of the performance achieved by MbGA on a real instance. The
CRP binding-site [20].

Type of Sol. Initial Positions Score

True Pos.: 61,17 55,17 76 63 50 7,60 42 39 9,80 14 61 41 48 71 17 53 1,84 78 240

PbGA Best: 61 55 31 63 81 7 24 66 9 14 61 41 48 71 17 53 5 79 241

PbGA Dev.: 0, 0, -45, 0, 31, 0, -18, 27, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1

MbGA Best 45 55 76 63 50 7 24 66 9 14 29 41 48 71 6 53 75 8 246

MbGA Dev.: -16, 0, 0, 0, 0, 0, -18, 27, 0, 0, -32, 0, 0, 0, -11, 0, -9, -50

In the instance (12, 3) again the MbGA were able to find the optimal solution.
In the instance (15, 4), the MbGA obtained a very good performance, since all its
solutions were close to the best value (as it happened with the instance (10, 2)).
In contrast with what happens with MbGA, the standard algorithm has a lower
performance, since the objective function average is far from the optimum. In
the last instance (16, 5), we can see that MbGA results surpass those obtained
by the standard one. In all cases we can see that there is a clear improvement of
the MbGA over the standard GA in terms of solution quality. If we consider the
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improvement on the average values we have a 9.5% improvement for the (10, 2),
16.36% for the (11, 2), 17.51% for the (12, 3), 22.13% for the (15, 4), and 17.82%
for the (16, 5). It is clear that as the motif length increases (with the exception
of (16,5)) the outperformance of the MbGA over the PbGA also increases.

Another very important issue is the computation time. In Table 2 we can
see that the computation time increases as the motif length increases in both
algorithms. However, the position based algorithm takes less time in all instances.
The reason of these results is that the objective function is computationally more
expensive in the MbGA than in the PbGA.

Another set of experiments were included allowing the PbGA to have the
same or more computation time than the MbGA by increasing the population
size from 1000 to 3000 individuals in the PbGA. The results are shown in Table 3.
We can see here that no significant improvement is achieved by the PbGA. In the
same table results given by the Gibbs sampler [11] are also shown. We can see
that the MbGA presents competitive results, outperforming the Gibbs sampler
in five out of twelve instances. These results showing that MbGA is better than
PbGA support the encoding selection made by other authors [10].

We also deal with a real problem consisting of 18 sequences of 104 base pairs
each. There are repeats of the motif in 5 of the 18 sequences. This is known as
the CRP binding-site and was taken from [20], and also used in [5]. Table 3 shows
the results for this case. In the first row we have the actual starting positions of
the motifs along with its score. In the second row we have the positions given
by the highest score individual of the PbGA. In the third row we have the error
of each predicted occurrence. That is, if the starting position for the occurrence
predicted by the algorithms coincides with the actual position of that occurrence
this error is zero. Otherwise, if the predicted position if shifted to the right then
the error is positive, and when this predicted position is shifted to the left the
error is negative. The same information is reported for the MbGA in rows four
and five.

PbGA and MbGA produce similar results; PbGA predicts one more position
than MbGA does. However, MbGA obtains the best result in terms of the score.
It is interesting to note that the algorithms produce higher scores than the
one produced by the real motifs. This fact motivates to search for an objective
function that better captures the real motifs. This result is basically saying that
the objective function does not strongly discriminate the signal (motif) from the
background noise.

5 Conclusions and Future Work

We have proposed an experimental comparison of two encoding schemes for the
implanted motif finding problem. A position based and a motif based encodings.
The position based encoding takes as chromosome a set of initial positions for
occurrences in each sequence; the motif based takes as a chromosome a candidate
motif. The second encoding better captures the idea of and individual and its evo-
lution regarding biological motifs. This algorithm is based on ideas provided by a
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successful heuristic for the planted (l, d)-motif model known as Pattern Branch-
ing. Experimental preliminary results show a clear solution quality improvement
of the motif based representation over the position based representation.

Future immediate research will be aimed at extending the set of instances
in the comparison set. We need also to apply the motif based algorithm to
real data and compare its performance with respect to other algorithms, like
Random Projections and Pattern Branching itself. We will also improve our
implementation to decrease the computation time, and to search for a more
suitable objective function.
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1 Universidade de São Paulo
Instituto de Ciências Matemáticas e de Computação
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Abstract. In this paper, we introduce an approach to integrate prior
knowledge in cluster analysis, which is different from the existing ones
for semi-supervised clustering methods. In order to aid the discovery of
alternative structures present in the data, we consider the knowledge of
some existing complete classification of such data. The approach pro-
posed is based on our Multi-Objective Clustering Ensemble algorithm
(MOCLE). This algorithm generates a concise and stable set of parti-
tions, which represents different trade-offs between several measures of
partition quality. The prior knowledge is automatically integrated in MO-
CLE by embedding it into one of the objective functions. In this case,
the function gives as output the quality of a partition, considering the
prior knowledge of one of the known structures of the data.

1 Introduction

Cluster analysis has been largely employed to address different kinds of prob-
lems in Bioinformatics, ranging from the identification of genes function to the
discovery of groups and subgroups of diseases [1,2]. As an unsupervised learning
task, such an analysis does not take into account a previously known classifica-
tion of the data (prior knowledge): it relies only on the similarities of the objects.
However, in the context of discovering disease subtypes, for instance, in order to
establish if clusters generated correspond to actual disease subtypes, the domain
experts compare them to a known classification of the data [3,4,5].

In fact, cluster analysis present two main difficulties: one regards the use
of a priori knowledge to verify the findings, and the other is related to the
inherent complications related with cluster analysis. The automatic use of prior
knowledge has been addressed by semi-supervised clustering techniques [6,7].
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However, these techniques consider that only a small number of the objects
in the data are labeled. They try to achieve a performance higher than those
achieved by either pure supervised or unsupervised techniques in the discovery
of one structure partially known.

An inherent complication in cluster analysis is the lack of a precise definition
for what a cluster is [8]. This results in a large number of clustering algorithms,
each one looking for clusters according to a different cluster definition (or cluster-
ing criterion) [9]. Moreover, clustering algorithms can find structures (partitions)
at different refinement levels (different numbers of clusters or cluster densities),
depending on their parameter settings [10].

Thus, one of the main difficulties of cluster analysis is the selection of the
best model for a given dataset. Clustering validation techniques support this
task. However, most of them are biased towards a clustering criterion [11]. Also,
each algorithm looks for a homogeneous structure (all clusters conforming to
the same cluster definition), while data can present an heterogeneous structure
(each cluster conforming to a different cluster definition) [9].

Another issue is that the same data can have more than one relevant struc-
ture, each one representing a different interpretation of the data [12]. The usual
application of cluster analysis to explore a dataset focuses on the discovery of
only one structure that best fits the data. This limits the amount of knowledge
that could be obtained with cluster analysis.

Cluster ensemble and multi-objective clustering approaches have been em-
ployed to address all the difficulties previously described [13,12]. More recently,
in [14], we proposed an integration of the ideas of these approaches in our Multi-
objective Clustering Ensemble (MOCLE) [14]. The idea is not only minimize
the intrinsic problems of cluster analysis, but also the limitations of the cluster
ensemble and multi-objective clustering methods when used separately.

The essence of MOCLE is the simultaneous optimization of different clustering
validation measures (objective functions) using a Pareto-based multi-objective
genetic algorithm together with a special crossover operator. For instance, the
prior knowledge about a known structure of the data can be integrated into
MOCLE by means of an additional objective function that takes external infor-
mation into account. The result of MOCLE is a concise, stable and high quality
set of partitions representing different trade-offs between the validation measures
optimized.

Techniques like MOCLE are very useful in functional genomics and gene ex-
pression data analysis, where the data usually have multiple meaningful inter-
pretations: genes can fit into more than one functional category or a disease, like
cancer, can present, depending on the required level of investigation, different
subtypes [5,4,3]. Furthermore, robustness against different data conformation is
a key issue in these areas, as there is not much previous knowledge to guide
the choice of the algorithms or the parameters configurations and the structures
present in the data tend to be complex.

In this paper, we discuss how prior knowledge of one complete classification
of the data can be automatically used to aid in the discovery of other structures.
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This task, as previously mentioned, is accomplished with the optimization of an
extra objective function by MOCLE. This aim is different from that of classi-
cal semi-supervised algorithms, which try to obtain the most precise model (in
terms of classification error) when compared to those models generated by pure
supervised and unsupervised techniques.

2 Related Work

The semi-supervised clustering techniques make use of prior knowledge on the
problem domain to guide the clustering process [7,6]. They are often suitable for
data with very limited previous knowledge, that is, for which a very small subset
of the objects are labeled, while the class of most of the objects are unknown.

Classes are entities related to categories previously defined in the real world
to organize the objects. Clusters, on the other hand, are entities defined by the
application of mathematical/statistical concepts to the data. The classes can
be related to one or more of the mathematical/statistical concepts, but this
need not to be the case. They do not necessarily correspond to the clusters.
The semi-supervised clustering techniques assume that the classes and clusters
are consistent, complement each other and their combined use can improve the
classification accuracy [7]. If these assumptions are strongly violated, the im-
provement cannot be guaranteed.

There are several ways to integrate prior knowledge into the clustering process.
For instance, the closet approaches to ours do this by integrating the knowledge
through the adaptation of the clustering criterion (or objective function) [7,6].
Demiriz et al. [6], for example, proposed a method to cluster the data whose goal
is to generate the purest possible clusters regarding the class distribution. They
use a genetic algorithm to minimize a function that is a linear combination of a
measure of dispersion of the clusters (unsupervised) and a measure of impurity
with respect to the known classes (supervised). As dispersion measure, they
investigated the within cluster variance and the Davies-Bouldin index [10]. The
Gini index was used as the impurity measure [15].

Another interesting work in this area is the one by Handl and Knowles [7].
They extended their algorithm MOCK (Multi-Objective Clustering with auto-
matic K-determination) to consider prior knowledge. Originally, MOCK simul-
taneously optimize two complementary objectives: overall deviation and con-
nectivity. In [7], the authors employ an additional objective function that takes
external knowledge into account: the corrected Rand index (CR) [10]. The CR
is computed using only the labeled data. Handl and Knowles also present an al-
ternative with two objectives: the silhouette width as the unsupervised objective
and the CR as the supervised one.

As previously mentioned, these techniques and ours have distinct purposes.
The previous techniques aim at the improvement of the accuracy of a model
generated to classify new objects, if compared to the models that would be
generated with the purely supervised or unsupervised techniques. In contrast,
our focus is on exploratory data analysis, where we search for several useful
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descriptions of the data. In fact, our main aim in this paper is to analyze if the
use of external knowledge can improve the capacity of MOCLE.

3 Multi-Objective Clustering Ensemble - MOCLE

In order to try to overcome the difficulties of the traditional algorithms for clus-
ter analysis, MOCLE combines characteristics from both the cluster ensemble
and multi-objective clustering methods [14]. As any cluster ensemble, MOCLE is
composed of two main steps: (1) generation of a diverse set of base partitions and
(2) determination of the consensus partition. Our approach differs from cluster
ensemble methods in two ways. First, we look for a set of “consensus” partitions
instead of only one. In fact, our set of solutions may contain partitions that
are combinations of other partitions, or partitions of high quality that already
appeared in the set of individual partitions. Second, we combine pairs of parti-
tions, iteratively, in an optimization process, instead of the usual combination of
all partitions at the same time. Such an iterative combination/selection of the
partitions avoids the negative influence of low quality base partitions that can
decrease the quality of the results of the traditional ensembles.

More precisely, MOCLE works as follows. Initially, a set of base partitions
is generated. Conceptually different clustering algorithms, optimizing different
clustering criteria, are employed for this purpose. For example, algorithms that
look for compact clusters should be used together with algorithms that look for
connected clusters. The more diverse the algorithms are, the larger the number
of types of cluster that can be discovered. Several parameter settings for the
algorithms are also considered in the construction of the set of base partitions.
This generates partitions with clusters at different refinement levels (partitions
with different numbers of clusters or partitions with clusters of several densities,
for example). It is important to have partitions with different types of clusters
at several refinement levels so that MOCLE can receive as much information as
possible to find the largest number of possible existing structures. In fact, we
assume that the relevant structures will be among the base partitions.

After generating the base partitions, the set of“consensus”partitions are found
by the optimization of different objective functions using a Pareto-based multi-
objective genetic algorithm. Any known algorithm can be employed. In this
paper, we used the algorithm NSGA-II (Non-dominated Sorting Genetic Algo-
rithm) [16]. The use of this class of genetic algorithm results in, as previously
mentioned, a set of partitions, instead of a single partition produced by tradi-
tional and cluster ensemble methods. This is an important feature in domains
like Bioinformatics, where the same data can have several interpretations.

The base partitions constitute the initial population to be used with the ge-
netic algorithm. Each partition is an individual and is represented by an array
of sets. Each set, in its turns, represents a cluster and contains the labels of
its objects. In addition to the special initial population, two other adaptations
are made in the traditional genetic algorithm: a special crossover operator and
the use of diverse clustering validation measures as objective functions. Together
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with the initial population, our special crossover operator is responsible for the
ensemble aspect of MOCLE. This operator finds the consensus between two par-
ent partitions. Any existing cluster ensemble method that can be applied to a
pair of partitions can be used as our crossover operator.

In this paper, we use the Hybrid Bipartite Graph Formulation (HBGF) as
the crossover [17]. HBGF is based on graph partitioning. In this method, first,
a bipartite graph is constructed using the set of base partitions, modeling their
objects and clusters simultaneously as vertices. Next, the graph is partitioned by
a traditional graph partitioning technique. The resulting division of the objects
is the consensus partition. To use HBGF as our crossover operator, we select two
parents by binary tournament. The number of clusters of the resulting consen-
sus partition is randomly chosen in the interval of variation of the numbers of
clusters of the parents. Next, we apply HBGF to combine the parent partitions,
generating a consensus partition with the number of clusters chosen.

With this operator, the partitions are combined in pairs, iteratively, during
the evolution process. The consensus partitions, generated at each iteration, are
also considered in the next combinations. This iterative combination avoids the
negative influence of the low quality partitions present in most of the traditional
cluster ensemble methods. The low quality partitions are gradually eliminated,
while the best individual partitions and the good combinations are maintained
for further combination.

Since we want to restrict the search space to the base partitions and their
combination, we do not apply a mutation operator. Therefore, the genetic al-
gorithm aims to select the best partitions, and not to explore all the space of
possible partitions. In the pure Pareto based multi-objective clustering scenario,
differences in the assignment of only one object to a different cluster in two
partitions can result in a different trade-off of the measures optimized. This can
result in a high number of very similar partitions in the approximation of the
Pareto front obtained.

In contrast, we argue that, in the context of clustering, the aim should not be
the generation of the most complete Pareto front approximation possible. Indeed,
having solutions representing each region of the Pareto front is enough to provide
a relevant set of alternative partitions. Considering this fact, MOCLE aims at the
generation of a concise set of solutions that are representative of the Pareto front.
As already mentioned, MOCLE relies on the ability of the clustering algorithms
in finding high quality partitions according to the employed criteria. Starting
with a set of potentially good partitions, MOCLE uses the multiple objectives
to select the best compromises. New partitions are created only by means of the
crossover operator and represent the consensus among other existing partitions.
As our crossover operator only produces combinations of existing partitions and
no mutation is used, the search space will not be explored in details. Thus, the
large amount of similar partitions will not be produced by MOCLE, favoring the
concision of the set of solutions obtained.

Finally, the objective functions should measure the quality of partitions in dif-
ferent ways, each one related to a different clustering criterion. They should also
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complement each other. For the completely unsupervised case, we have used the
same measures employed in [12]: overall deviation and connectivity. The overall
deviation of a partition measures the overall summed distances between objects
and their corresponding cluster center. This measure is strongly biased towards
spherically shaped clusters and improves with the increase in the number of clus-
ters. The connectivity reflects how often neighboring objects have been placed
in the same cluster. It improves with the decrease in the number of clusters. The
connectivity is able to detect arbitrarily shaped clusters, but it is not robust to
deal with overlapping clusters. These two objectives, to be minimized, balance
each other’s tendency to increase or decrease the number of clusters, avoiding
the convergence to trivial solutions. The objective functions are responsible for
the selection of the high quality partitions and the robustness of MOCLE with
respect to different data conformation.

The prior knowledge about a known structure of the data can be integrated
into MOCLE by means of an additional objective function that takes external
information into account. In this paper we investigated the information gain
measure for this purpose [15,18]. The CR index, used in [7], would not be ap-
propriate for our purpose. It considers negatively the subdivisions of clusters,
while we want to find partitions that are refinement of the known partition. As
in Demiriz et al. [6], we aim at generating partitions with clusters as pure as
possible regarding the class distribution. When used as criteria to the division
of nodes in decision trees, the Gini index [6] and the information gain produce
very similar trees [18]. However, the Gini index gives preference to divisions that
place the largest class in one pure node and all other classes in another node [15].
Information gain, in its turn, favors the generation of nodes with balanced sizes.
The application of the Gini index to our problem would favor partitions with a
large pure cluster (considering the known structure) and a cluster that mixed
the other classes, in detriment of partitions with subdivisions of the large class
together with a good separation of the smaller classes, that would be preferred.
Therefore, we decided to use the information gain.

4 Experiments

In order to evaluate our approach, we choose datasets that contain more than
one possible structure. ΠE = {πE1, πE2, ..., πEnE} is the set of known structures
for a given dataset, where nE is the number of known structures and πEj is
the jth known structure. Three artificial and two real datasets were employed.
Table 1 summarizes the main characteristics of the datasets. In this table, n is
the number of objects, d is the dimension of the dataset (number of attributes),
nE is the number of known structures and KEj is the number of clusters of the
jth structure.

The artificial datasets can be seen in Fig. 1. They were designed to contain at
least two distinguishing structures. These structures are heterogeneous and are
in different refinement levels.
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Table 1. Datasets characteristics

Dataset n d nE KE1 KE2 KE3 KE4

ds2c2sc13 588 2 3 2 5 13 -

ds3c3sc6 905 2 2 3 6 - -

ds4c2sc8 485 2 2 2 8 - -

golub 72 3571 4 2 3 4 2

leukemia 327 271 2 3 7 - -

Fig. 1. Artificial datasets

For the real datasets, the different structures correspond to different known
classifications of the data. Thus, we assume that the known classifications are in
accordance with some of the clustering criteria we use. However, a classification
could be unrelated to a clustering criterion. This would lead to a low performance
for all clustering techniques.

The golub dataset contains gene expression data from acute leukemia pa-
tients [4]. For our analysis, we consider four distinct known structures of this
dataset. The two main structures refer to types and subtypes of acute leukemia:
E1 classifies the samples in Acute Lymphoblastic Leukemia (ALL) and Acute
Myeloid Leukemia (AML). E2 contains a refinement of the ALL class. In this
case, the data are classified in AML, T-ALL (T-lineage ALL) and B-ALL (B-
lineage ALL). The other structures correspond to different types of information.
E3 classifies the samples according to the institution where the samples came
from: DFCI (Dana-Farber Cancer Institute), CALGB (Cancer and Leukemia
Group B), SJCRH (St. Jude Children’s Research Hospital) and CCG (Chil-
dren’s Cancer Group). E4 shows if the samples are from bone marrow (BM) or
peripheral blood (PB). The data were preprocessed in the same way as in [4].
First, a floor of 100 and a ceiling of 16000 were applied. Then, we eliminated
the genes with max/min ≤ 5 and (max − min) ≤ 500, where max and min re-
fer respectively to the maximum and minimum expression levels of a particular
gene across mRNA samples. Finally, a base 10 logarithmic transformation was
applied.

The leukemia dataset, described in the literature as St. Jude leukemia, con-
tains gene expression data related to subtypes of pediatric acute lymphoblastic
leukemia [3]. For this dataset, we considered two structures. E1 classifies the
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objects in B-ALL, T-ALL and OTHERS (objects that does not fit into the other
group). E2 contains a refinement of the class B-ALL and divides the objects
in BCR-ABL, E2A-PBX1, “Hyperdiploid>50”, MLL, TEL-AML1, T-ALL and
OTHERS. We employed the pre-processed version of the dataset available at
http://sdmc.lit.org.sg/GEDatasets/. Moreover, we selected the genes that best
define each group (40 per group), identified by Yeoh et al. with the chi-square
metric [3]. We also converted the attributes to the interval [0, 1]. All this were
made to use the data in the same way as in its original paper.

For all datasets, we generate the initial population with the algorithms k-
means (KM), average-link (AL), single-link (SL) [10] and Shared Nearest Neigh-
bors (SNN) [19]. These algorithms generate different types of clusters. KM and
LM looks for compact clusters and SL and SNN obtain connected clusters.
KM, LM and LS were chosen because they are traditional and largely em-
ployed clustering algorithms [10]. In its turns, SNN is a recent technique and
was selected because it can robustly deal with high dimensionality, noise and
outliers [19]. In order to consider different refinement levels, we adjust the pa-
rameters to generate partitions with numbers of clusters, k ∈ [Kmin, Kmax],
where Kmin = min

πEj∈ΠE

KEj (the smallest number of clusters among those of

the known structures) and Kmax = 2 max
πEj∈ΠE

KEj . This procedure generates an

initial population of different size for each dataset.
To minimize the occurrence of suboptimal solutions, we run KM 30 times for

each value of k, each time with a random choice of initial centers. The partition
with the lowest squared error for each value of k was chosen to take part of
initial population. The AL and SL partitions were obtained by generating the
trees and cutting them in order to produce one partition for each value of k. For
SNN, we run the algorithm with several values for the parameters NN (2%, 5%,
10%, 20%, 30% and 40% of n), topic (0, 0.2, 0.4, 0.6, 0.8 and 1) and merge (0,
0.2, 0.4, 0.6, 0.8 and 1). In preliminary experiments, we noticed that varying the
other parameters did not produce very different results. Thus, the default value
was used for the parameter strong, and the value 0 was used for the parameters
noise and label (to have all points assigned to a cluster and no point excluded
as noise). From the partitions created with these parameters values, we chose
only those partitions having k in the interval of interest to be used in the initial
population.

In the experiments, we compare two versions of MOCLE: one unsupervised
(MUH) and one that take prior knowledge into account (MSH). The only dif-
ference between them is that MSH includes the third objective function that
depends on previous knowledge. The same initial configuration, including the
initial population, was used for both versions. As MOCLE is not deterministic,
it was run 30 times with the same initial configuration. For all datasets, the
known structure presented to MSH as prior knowledge was E1. The number of
generations used was set to 50. Preliminary experiments showed that increasing
the number of generations did not modify the Pareto front approximation ob-
tained. The internal population size, nI , depends on the number of partitions
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Table 2. Parameter values

Dataset Kmin Kmax v NN nI

ds2c2sc13 2 26 30 12, 29, 59, 176, 235 114

ds3c3sc6 3 12 46 18, 45, 91, 272, 362 42

ds4c2sc8 2 16 25 10, 24, 49, 146, 194 66

golub 2 8 4 1, 4, 7, 22, 29 46

leukemia 3 14 17 7, 16, 33, 98, 131 38

generated by the individual algorithms having k ∈ [Kmin, Kmax]. The number
of nearest neighbors used to calculate the connectivity, v, was set to 5% of n (size
of the dataset). Table 2 shows, for each dataset, the values of all parameters.

Besides comparing MUH and MSH, we also include the results of the indi-
vidual algorithms (KM, AL, SL and SNN) as a reference. Also, as a reference,
we run two other techniques that aims at the combination of different clustering
criterion that are purely unsupervised: the multi-objective clustering of Handl
and Knowles (MOCK) [12] and the ensemble (ES) of Strehl and Ghosh [13], with
the equivalent parameters set to the same values used for MOCLE. The results
of MUH, MSH and MOCK are a set of nS solutions, ΠS = {πS1, πS2, ..., πSnS },
which is an approximation of the Pareto front. The individual algorithms do
not generate a set of solutions. In order to compare their results with those of
MOCLE, we considered the solutions generated for the initial population with a
given algorithm as its set of solutions. That is, the partitions of the initial popu-
lation that were generated with AL compose the set of solutions of the algorithm
AL, for example. For KM, the results of each of the 30 runs count as a set of
solutions. ES also do not generate a set of solutions. Thus, we construct this set
by generating one solution for each value of k ∈ [Kmin, Kmax].

5 Analysis of the Results

The results were evaluated via the Corrected Rand index (CR) [10]. This index
measures the similarity between two partitions. Values of CR close to 0 mean
random partitions and close to 1 indicate a perfect match between the partitions.
Table 3 shows the CR or the average of CRs for each technique, depending if
the technique is deterministic or not. The highest values of CR are highlighted
in boldface.

For the deterministic techniques (AL, SL and SNN) we have just one set
of solutions ΠS . In these cases, we calculated the CR between each solution
partition, πSi ∈ ΠS , and each known structure, πEj ∈ ΠE . Next, for each
known structure, πEj , we selected the best partition in ΠS (the partition πSi

with the highest CR when compared with πEj).
For the non-deterministic techniques (KM, MOCK, ES, MUH and MSH), our

experiments produced 30 sets of solutions, ΠS1 . . . ΠS30 . For each set, ΠSl
, we
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calculated the CR between each solution partition, πSli ∈ ΠSl
, and each known

structure, πEj ∈ ΠE . Next, for each known structure, πEj , we selected the best
partition in each ΠSl

(the partition πSli with the highest CR when compared
with πEj). Finally, for each known structure, we calculated the mean of the CR
of the 30 partitions selected (one for each ΠSl

).

Table 3. Performance of the algorithms

Dataset Structure KM AL SL SNN MOCK ES MUH MSH

ds2c2sc13 E1 (k = 2) 1 1 1 1 1 0.691 1 1
E2 (k = 5) 0.789 1 1 1 1 0.992 1 1
E3 (k = 13) 0.651 0.617 0.872 1 0.708 0.786 0.777 0.777

ds3c3sc6 E1 (k = 3) 0.900 0.789 0.525 0.927 0.861 0.890 0.941 0.962
E2 (k = 6) 0.601 0.490 0.250 0.618 0.648 0.597 0.674 0.697

ds4c2sc8 E1 (k = 2) 0.794 0.281 0.097 0.161 0.236 0.296 0.3486 0.3485

E2 (k = 8) 0.816 0.831 0.019 0.586 0.885 0.846 0.856 0.861

golub E1 (k = 2) 0.507 0.876 0.078 0.855 0.684 0.743 0.876 0.900
E2 (k = 3) 0.502 0.798 0.003 0.855 0.795 0.637 0.855 0.877
E3 (k = 4) 0.402 0.693 0.108 0.677 0.622 0.589 0.693 0.699
E4 (k = 2) 0.024 0.057 0.315 0.112 0.057 0.110 0.315 0.315

leukemia E1 (k = 3) 0.677 0.325 0.020 0.044 0.413 0.315 0.276 0.335

E2 (k = 7) 0.748 0.543 0.005 0.004 0.782 0.659 0.770 0.775

In order to verify if the differences between the CR of both versions of MOCLE
were statistically significant, we performed the Wilcoxon signed-ranks test [20].
We found that the difference between MSH and MUH was statistically significant
at a significance level of 0.05.

Looking at the individual algorithms, the first aspect that can be observed in
Table 3 is that, for each dataset/known structure, a different individual algorithm
showed the best performance. This illustrates the previously discussed difficulty
in the choice of an appropriate algorithm to be used with a particular dataset.

We can also observe that both versions of MOCLE, in most of the cases
(76.92%), obtained similar or better results than the best individual algorithm.
There were only three cases where one of the individual algorithms performed
better than MOCLE. This happened because the good solutions for these cases
do not correspond to the best trade-offs of the objective functions. Considering
that the structures investigated are in different refinement levels and are in
accordance with different clustering criteria, the overall good performance of
MOCLE shows its robustness against different data conformation.

Comparing both versions of MOCLE with either MOCK or ES, we observed
that MOCLE obtained similar or better results than MOCK in 76.92% of the
cases and outperforms ES in 92.31% of the cases.
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We should observe that, for the structure E4 of the dataset golub, all tech-
niques showed a very poor performance. This is clearly the case where the clas-
sification is not consistent with at least one of the clustering criteria optimized.

Finally, comparing MUH and MSH, we can see that in most of the cases, MSH
performed similarly or better than MUH (92.31%). Among the 13 datasets/known
structures we obtained four ties and just one case where MUH performed better.
These 13 datasets/known structures include the structure E1 of each dataset
(that is, the previous knowledge used in MSH). However, our main issue is to
verify if the use of this knowledge helps in the obtaining of other structures, not
considered as previous knowledge. In fact, we observed that, excluding the struc-
ture E1 of each dataset from the analysis, MSH performed similarly or better
than MUH in 100% of the cases, from which 3 cases were ties. This shows the
effectiveness of the integration of previous knowledge in MOCLE to help in the
obtaining of other unknown structures.

6 Concluding Remarks

In this paper, we introduce an approach to integrate prior knowledge in cluster
analysis, which is different from the existing ones for semi-supervised clustering
methods. Our aim is to help the discovery of alternative structures that can be
present in the data. The knowledge of some existing complete classification of
such data is used for this purpose.

Our experimental results show that MOCLE, either considering previous
knowledge or not, frequently selects the best results among those of the individual
algorithms in a range of different data conformation/refinement levels. They also
show that the use of prior knowledge with MOCLE (MSH) can result in solutions
with higher quality than those obtained without it (MUH).

The use of other objective functions, unsupervised or not, could lead to fur-
ther improvement of the results. Future works include the investigation of other
functions. Another interesting direction for future research is the adaptation of
MSH to the traditional semi-supervised clustering and its comparison with other
existing techniques.
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Abstract. This paper presents the design and evaluation of a task allocation 
framework for Biological Sequence Comparison applications that use dynamic 
programming and run in heterogeneous environments. The framework is com-
posed by four modules and either task allocation policies or applications can be 
integrated to it. The results obtained with four different task allocation policies 
in a 10-machine heterogeneous environment show that, for some sequence 
sizes, we were able to reduce the execution time of the parallel application in 
54.2%, with the appropriate allocation policy. 

1   Introduction 

Parallel processing has been extensively used to accelerate the production of results in 
many research areas such as meteorology and computational biology. However, the 
performance gains obtained by parallel computing are highly dependent on efficient 
task allocation mechanisms. Having a parallel application composed by a set of tasks 
and a set of  processors, a task allocation algorithm will assign parallel tasks to proc-
essors observing some optimization criteria [7]. 

In its general formulation, the allocation problem is NP-complete [10]. For this 
reason, heuristic methods are generally used to find a good solution on a reasonable 
time. One traditional way to map tasks to processors is to apply an heuristic that 
makes decisions without taking into consideration the characteristics of the parallel 
application being scheduled. On the other hand, application-specific task allocators 
are targeted to a specific class of application and explore the applications characteris-
tics to obtain more realistic mappings.  

Nowadays, most of the parallel/distributed systems present a certain degree of het-
erogeneity. In this scenario, the resource allocation problem becomes more complex 
since the characteristics of the machines and networks that compose the parallel envi-
ronment must be also taken into consideration. In the literature, there are examples of 
traditional task allocators/schedulers[15][13] and application-specific allocators [8][5] 
for heterogeneous environments. 

In the last decade, genome projects have produced a very huge amount of biologi-
cal data. In order to better understand a newly sequenced organism, biologists com-
pare its sequence against millions of other organisms contained in genomic databases, 
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in order to infer functional and structural properties. Sequence comparison is, thus, 
one of the most important mechanisms in computational biology.  

One of the first exact methods in the literature to globally compare two sequences 
is NW [9]. It is based on dynamic programming and calculates a similarity matrix of 
size m x n, where m and n are the sizes of the sequences. NW has time and space 
complexity O(mn). The NW algorithm was modified by Smith-Waterman (SW) [14] 
to deal with local alignments. SW [14] is also based on dynamic programming, with 
quadratic time and space complexity.  

Parallel processing is often used as an alternative to reduce the execution time of 
these exact methods. Most of the parallel strategies proposed in the literature  
[1][2][4][6][14] use the wavefront method to calculate the similarity matrix. In this 
method, the amount of parallelism is non-uniform. All of these proposals use all avail-
able processors to perform computations and, with the exception of [4], all consider 
homogeneous environments. Nevertheless, it has been observed that, for small sequence 
sizes, bad speedups are obtained when all available processors are used [1] [4] [6]. 

This article proposes and evaluates an application-specific task allocation frame-
work for heterogeneous environments. Our goal is to determine which processors will 
be assigned to biological sequence comparison applications.  To do that, our policies 
can take into account application-specific issues (sequence sizes, data dependency 
patterns) and environment-specific characteristics (processing power and communica-
tion costs). In our framework, many allocation strategies can be integrated. By now, 
we have implemented four policies. 

The results obtained in a 10-machine heterogeneous environment show that the 
number of machines assigned is dependent on the size of the problem and on the allo-
cation policy. The results obtained when comparing a hundred 1Kbp (kilo base pairs) 
DNA sequences with a single 1Kbp DNA sequence with a real biological sequence 
comparison parallel application [3] presented a reduction of 54.2% on the total execu-
tion time, when compared with the fixed policy, which assigns all available proces-
sors to the computation. 

The remainder of this article is organized as follows. Section 2 describes the se-
quence alignment problem, presents the basic algorithms to solve it and some parallel 
variations. Section 3 describes the design of our task allocation framework. Some ex-
perimental results are discussed in Section 4. Finally, Section 5 concludes the paper. 

2   Biological Sequence Comparison 

To compare two sequences, we need to find the best alignment between them, which 
is to place one sequence above the other making clear the correspondence between 
similar characters [12]: 

 
C A – C G G T A C 
C A T C G A T – C 

 

In order to measure the similarity between two sequences, a score can be calculated 
as follows. Given an alignment between sequences s and t, the following values are 
assigned, for instance, for each column: a) +1, if both characters are identical 
(match); b) -1, if the characters are not identical (mismatch); and c) -2, if one of the 
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characters is a space (gap). The score is the sum of all these values. The similarity 
between two sequences is the highest score.  

The algorithm NW [9] is an exact method based on dynamic programming to ob-
tain the best global alignment between two sequences. It is divided in two phases: 
create the similarity matrix and obtain the best global alignment. 

The first  phase receives input sequences s and t, with |s| = m and |t| = n, where |s| 
represents the size of sequence s. The similarity matrix is denoted Am+1,n+1, where Ai,j 
contains the similarity score between prefixes s[1..i] and t[1..j].At the beginning, the 
first row and column are filled with the values -gi, where i is the size of the non-
empty subsequence and g is the gap penalty. This represents the cost of aligning a 
non-empty subsequence with an empty one. Note that A0,0 = 0. The remaining ele-
ments of A are obtained from equation 1. In equation 1, p(i,j) = 1 if s(i)=t(j) (match) 
and –1 otherwise (mismatch). The total score between sequences s and t is the value 
contained in cell Am+1,n+1. Note that the value of each matrix cell Ai,j depends on Ai-1,j, 
Ai,j-1 and  Ai-1,j-1. 

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

= max])..1[],..1[( jtissim

sim(s[1..i],t[1..j-1]) -2
sim(s[1..i-1],t[1..j-1]) +p(i,j)
sim(s[1..i-1],t[1..j]) -2

(1) 

 
Figure 1 presents the similarity matrix between sequences s = AGTAC and t = 

AGTC. The arrows indicate the cell from where the value was obtained. 

- A G T A C

-  0 -2 -4 -6 -8 -10

A -2 1 -1 -3 -5 -7

G -4 -1 2 0 -2 -4

T -6 -3 0 3 1 -1

C -8 -5 -2 1 2 2
 

Fig. 1. Similarity matrix to globally align two DNA sequences  

To obtain the best global alignment, the algorithm starts from cell Am+1,n+1 and fol-
lows the arrows until cell A0,0 is reached. A left arrow in Ai,j (figure 1) indicates the 
alignment of  s[i] with a gap in t. An up arrow represents the alignment of t[j] with a 
gap in s. Finally, an arrow on the diagonal indicates that s[i] is aligned with t[j].  

To obtain the similarity between parts of the sequences, local alignment must be 
used (SW) [14]. Like NW, SW is also based in dynamic programming with quadratic 
time and space complexity. However, there are three basic differences between them. 

The first difference is on the initialization of the first row and column, which are 
filled with zeros in SW. The second difference involves the equation used to calculate 
the remaining cells since, in SW, no negative values are allowed. In order to do that, 
the value zero is included in equation 1. 
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The third difference concerns the cell used to start the traceback process. To obtain 
the best local alignment, the SW algorithm starts from the cell which has the highest 
value, following the arrows until the value zero is reached. 

In the NW and SW algorithms, most of the time is spent calculating the similarity 
matrix A and this is the part which is usually parallelized. The access pattern pre-
sented by the matrix calculation is non-uniform and the parallelization strategy that is 
traditionally used in this kind of problem is known as the wavefront method [18]. 

Figure 2 illustrates the wavefront method for 4 processors, where each processor 
calculates a subset of columns of the similarity matrix. At the beginning of the com-
putation, only P1 is computing (figure 2.a). When P1 finishes calculating the values 
of a border column, it sends them to P2, that can start calculating (figure 2.b). In  
figure 2.c, the maximum parallelism is attained. 

 

Fig. 2. The wavefront method 

Using the wavefront method, many parallel variations of the basic algorithm have 
been proposed in the literature [1][2][4][14]. These proposals basically differ on the 
strategy used to reduce the space and/or time needed to perform computations. With 
the exception of [11], all use the wavefront method. 

3   Design of the Task Allocation Framework 

Our task allocation framework is designed for parallel applications that follow the 
wavefront pattern (figure 2) and will execute on heterogeneous environments.  

The goal of our task allocation framework is to decide which processors will exe-
cute parallel tasks. Having a set of p available processors and a parallel application, 
our framework chooses p´ processors (p´ ≤  p) and splits the parallel application into 
p´ tasks. 

3.1   Overview of the Architecture 

The designed framework has the modular architecture shown in figure 3. The resource 
discovery module is responsible for retrieving information about the heterogeneous 
system, generate a structured data set and store it. The task allocation module contains 
the task allocation policies. It is responsible to generate the processor x task map as 
well as to add new policies to our framework. The execution module is responsible to 
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Fig. 3. Architecture of the framework  

encapsulate the parallel application and execute it. Finally, the controller  module 
receives the execution request from the user and controls the whole process. 

Having this structure, two components are created: MasterComponent and Slave-
Component (figure 4). The MasterComponent contains the four framework modules 
(figure 3) and the SlaveComponent contains only two modules: controller and execu-
tion. To execute a parallel application, we use a master/slave architecture where the 
master processor is responsible to allocate tasks to processors and also to execute a 
parallel task, acting as processor P1 (figure 2). Since the first processor (P1) in the 
wavefront method always finishes first, there is no conflict between these two roles. 
The other machines only execute a parallel task, communicating with the neighbors 
and the master processor.  

Master Processor

MasterComponent

SlaveComponent

Slave Processor

SlaveComponent

Slave Processor

SlaveComponent ...
Slave Processor

SlaveComponent

 

Fig. 4. Placement of the components in the architecture 

3.2   Resource Discovery Module 

Our resource discovery module retrieves three types of information: names of the 
available p processors, processing power and communication cost. 

The processing power is defined in the context of a parallel dynamic programming 
application as the cost e to fill a single position of the similarity matrix (figure 1). 
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The communication cost is the cost of executing a ping application between each 
pair of machines (ci,j), divided by two.  

3.3   Task Allocation Module 

The task allocation module is the core of our framework. The interface with the other 
modules is the function obtainMapping (matrixDimensions, sysinfo, policy, proc-
Weight, commWeight). This function is executed by the Controller component, that 
must provide the size of the similarity matrix (matrixDimensions), information about 
the heterogeneous system (sysinfo), the number of the policy to be used (policy) and 
the weights that must be associated with processing and computation (procWeight and  
commWeight). This function returns a structured data type that represents the proces-
sor x task mapping (map), which contains the size of the map, the name of the proces-
sors that will execute the parallel application and a list of begin and end columns in 
the similarity matrix that each processor will calculate. By now, each processor is 
assigned the same amount of work. 

The behavior of the function obtainMapping is very simple, consisting of a case in-
struction that has as parameter the allocation policy (policy). In order to integrate new 
policies to our framework, the programmer must add his/her function into this case. 

In order to evaluate the generality and simplicity of our framework, we integrated 4 
allocation policies to it: fixed, ProcCom, ComProc and ComProcSync. 

The fixed policy is traditionally used to execute sequence comparison applications 
[11] [4] [3] [1]. Having two sequences of size m and n and p available processors, the 
computation of the similarity matrix is divided among the p processors, where each 
processor will generally calculate m * (n/p) matrix cells. 

The other three policies determine which p´ processors out of p will execute tasks. 
They use the same idea and they basically differ on how the execution time is esti-
mated and also on the weight assigned to processing power and communication.  
Figure 5 presents this basic algorithm. 

 
allocationPolicy (matrixDimensions, sysinfo, procWeight, commWeight) 
begin 
  processor[p] = sortProcessors(sysinfo, procWeight, commWeight); 
  time[1] = estimate_execution_time(processor[1]); 
  for i=2 to p do 
  begin 
    time[i] = estimate_execution_time(processor[1..i]); 
    if (time[i] < time[i-1]) 
      if  (i < p) 
        continue_loop; 
      else 
        map = build_map(processor[1..p]); 
    else 
      begin 
        map = build_map(processor[1..i-1]); 
        break_loop; 
      end 
    return(map); 
 end 

Fig. 5. Basic algorithm used in four allocation strategies 
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First, the processors are sorted according to their processing power or communica-
tion cost or a combination of both in such a way that the vector processor is filled 
with the best processor in its first position (processor[1]). Second, the execution time 
is estimated with the chosen policy for the best processor. After that, execution times 
are estimated using a combination of i processors until the estimated time for i proc-
essors is higher than the one for i-1 processors. When this condition holds or when the 
number of available processors is attained, the loop is broken and a processor map is 
built with the best i-1 (or p) processors. 

Policies ProcCom and ComProc sort processors by processing power and commu-
nication cost, respectively. This is the only difference between them. In both cases, 
we assume that the execution time is limited by the processing power of the slowest 
processor. Also, the communication time is a function of the total amount of data 
transferred and the associated communication cost. Formula 2 illustrates this compu-
tation, where i is the number of processors under consideration, and the other parame-
ters are explained in section 3.2. 

                                            ti = ei * m /i( )* n + n cj, j + 1

j=1

i−1

∑                                              (2) 

Policy ComProcSync is more ellaborated than the previous ones since synchroniza-
tion due to the wavefront pattern is also taken into consideration. Analyzing the paral-
lelization of the wavefront method (figure 2), we can see that, first, only processor P1 
computes. After the first communication, P1 and P2 compute in parallel. Only after 
the communication between P2 and P3, P3 can start computing, and so on. Using 
these observations, we generated formula 3 for the estimation with more than one 
processor. With one processor, formula 2 is used. 

                             ti = (m /i) * ej * cj , j + 1 + n *(ci − 1, i + ei *(m /i))
j=1

i−2

∑
j=1

i−1

∑                               (3) 

3.4   Execution Module 

The goal of the execution module is to isolate the application details from the other 
framework modules. In this case, the MasterComponent (figure 4) distributes the 
work to the tasks and waits for the results whereas the SlaveComponent receives the 
work, does the computation and sends the results to the master. 

4   Experimental Results 

A prototype of the proposed framework was implemented in C++, using the MPI2 
interface. The experimental results were collected in two research laboratories (Lab-
Pos and LaICo) interconnected by a 10Mbps switch. In our tests, we used machines 
with only one processor.  

The hardware configuration of the ten machines used in the tests is shown in table 1 
as well as the processing time to calculate one similarity matrix cell. All machines run 
Red Hat Linux 3.2.2 and mpich2 1.0.3. 
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In table 2, we can see that the LabPos machines present the best communication 
times. Nevertheless, communication times of pos03 and pos04 are sensibly higher 
than the times collected from the other machines in the same laboratory. On the other 
hand, the LaICo machines present the best processing times (table 1).  

In our tests, we used a real bioinformatics parallel application [3] that was encapsu-
lated by the execution module (section 3.4). In all executions, the MasterComponent 
starts processing and executes the task allocation module to create the processor x 
task map using the information previously retrieved by the resource discovery module 
(tables 1 and 2). Having the map, the MasterComponent dynamically instantiates the 
slave tasks (SlaveComponent) using the MPI2 spawn call. 

Table 1. Hardware configuration and processing times of the machines used in the tests 

Lab Machine CPU Memory HD Processing 
time (s) 

LabPos pos03, pos04 
pos06, pos08 
pos09, pos10 
pos14 

AMD Athlon 1GHz 256MB 18GB 0.000426 

LaICo fau, magicien 
carbona 

Pentium 4 1.7GHz 256MB 28GB 0.000270 

Table 2. Communication costs (s)  among the machines 

 pos08 pos06 pos04 pos03 pos14 pos10 pos09 fau mag. carb. 
pos08 0 0.086 0.084 0.072 0.093 0.094 0.089 0.193 0.189 0.188 
pos06 0.099 0 0.071 0.085 0.078 0.081 0.080 0.191 0.187 0.185 
pos04 0.086 0.089 0 0.085 0.080 0.082 0.081 0.192 0.189 0.185 
pos03 0.145 0.168 0.166 0 0.186 0.188 0.187 0.388 0.373 0.375 
pos14 0.176 0.151 0.144 0.173 0 0.172 0.165 0.389 0.389 0.377 
pos10 0.089 0.077 0.076 0.087 0.080 0 0.084 0.195 0.191 0.197 
pos09 0.092 0.078 0.073 0.093 0.081 0.082 0 0.185 0.183 0.189 

fau 0.197 0.209 0.195 0.202 0.209 0.212 0.199 0 0.158 0.151 
mag. 0.206 0.211 0.212 0.204 0.210 0.210 0.203 0.181 0 0.149 
carb. 0.204 0.205 0.205 0.211 0.200 0.208 0.203 0.182 0.162 0 

 
We run our prototype with the four allocation policies for the following compari-

sons: (a) one 1Kbp sequence is compared with a hundred 1Kbp sequences; (b) one 
2Kbp sequence is compared with a hundred 2Kbp sequences and (c) one 4Kbp  
sequence is compared with a hundred 2Kbp sequences. The results are shown in  
tables 3, 4, and 5, respectively. In these tables, the comparison time is the time needed 
to execute the parallel application and the total execution time is the wallclock time 
for the whole application, including the execution of the task allocation algorithm, the 
spawn of the worker tasks, the application execution and the finalization procedures. 
The last column presents the reduction in the comparison time, when compared with  
the fixed policy. 
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Table 3. Times to compare one 1Kbp sequence with 100 1Kbp sequences 

Policy Machines Comparison 
Time (s) 

Total Time (s) Reduction  

fixed 10 4.39 5.56 0% 
ProcCom 3 2.01 2.77 54.2% 
ComProc 8 3.50 5.13 20.3% 
ComProcSync 5 3.91 5.17 11.0% 

 
In table 3, the best results were obtained with the ProcCom policy, which chose the 

three machines that belong to the LaICo laboratory.  This happened because ProcCom 
organizes the machines by the computing power (table 1). This indicates that the 
parallel application is limited by the processing time and not by the communication 
cost, as suppose policies ComProc and ComProcSync.  

Table 4. Times to compare one 2Kbp sequence with 100 2Kbp sequences 

Policy Machines Comparison 
Time (s) 

Total Time (s) Reduction  

fixed 10 8.09 10.13 0% 
ProcCom 3 4.75 5.68 41.3% 
ComProc 8 7.85 9.48 3.0% 
ComProcSync 5 8.18 9.60 -1.1% 

 
In table 4, the same situation is observed since policies ProcCom and ProcCom-

Sync  present the best results. Policy ComProcSync presented the worst results but, 
even in this case, the total execution time was better than the one presented by the 
fixed policy. Policy ComProcachieved better results than ComProcSync since Com-
Proc allocated all LabPos machines and one LaICo machine. This reinforces the idea 
that the sorting criterion must be processing time.   

Table 5. Times to compare one 4Kbp sequence with 100 2Kbp sequences 

Policy Machines Comparison 
Time (s) 

Total Time (s) Reduction  

fixed 10 10.69 11.90 0% 
ProcCom 3 9.88 10.61 7.6% 
ComProc 8 11.313 12.93 -5.8% 
ComProcSync 8 11.541 12.94 -7.9% 

 
The scenario presented in table 5 indicates that the sequence sizes are almost big 

enough to justify the use of all available machines (fixed policy). Even in this case, 
policy ProcCom behaved better than the fixed policy. Policy ComProcSync chose 8 
machines, instead of 5 (tables 3 and 4), indicating that more machines must be used 
since the size of the sequences is augmented. 
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5   Conclusions and Future Work 

In this paper, we proposed and evaluated a task allocation framework for parallel 
sequence comparison applications that run on heterogeneous environments. Our 
framework is quite complete since it integrates resource discovery, task allocation and 
parallel execution. Also, allocation policies can be integrated to it in a relatively sim-
ple way.  

The results obtained in an 10-machine heterogeneous environment presented a 
great reduction on the execution time when compared to the fixed allocation policy. 
To compare a 1Kbp DNA sequence with a hundred 1Kbp sequences, we achieved 
54.2% of reduction on the comparison execution time, using 3 processors, instead of 
10. As long as the sequence sizes are augmented, the policies tend to allocate more 
processors to the computation, having a behavior that is close to the fixed policy.  

As future work, we intend to integrate new allocation policies and parallel se-
quence comparison applications to our framework. Also, we intend to evaluate our 
framework in a more complex environment, composed by more machines and more 
distinct networks. Finally, we intend to refine our resource discovery module, allow-
ing the periodical retrieval of information.   
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Abstract. In order to improve EST trimming, we proposed a new meth-
od consisting of a new set of procedures to detect regions that do not
belong to the sequenced organism or have low quality or low complexity.
Most trimming procedures process ESTs in a pipeline where the output
of an step is adopted as the input for the following one. In our method,
all artifact detection steps process the raw EST and their results are
combined in the last step, which outputs the trimmed sequence. This
strategy reduces the occurrence of false negatives and, additionally, has
the advantage of producing better artifact composition characterization
for the analyzed sequences. We evaluated our method using SUCEST [1]
ESTs. Based on the results, we concluded that our method suits projects
that want to produce more reliable clusters.

1 Introduction

An expressed sequence tag (EST) [2] is a fragment of a cDNA (complementary
DNA), which is a copy of an mRNA (messenger RNA). By sequencing a cDNA,
we obtain a nucleotide sequence belonging to a gene that exists in the genome
and is expressed by a cell.

Artifacts are regions that do not belong to the sequenced organism or have
low quality or low complexity. Their presence in the ESTs influences negatively
the results of the analyzes of the data produced in the project. For example,
a subsequence that has high error rates, called low quality artifact, does not
guarantee that its nucleotide sequence represents the real sequence found in the
organism. Therefore, it should be trimmed off, making trimming procedures an
important part of the sequence analysis pipeline in an EST Sequencing Project.

Some projects, like SUCEST – Sugar Cane EST Project [3], have their own
trimming procedure while others use specific trimming software as ESTprep [4]
or LUCY [5]. The latter is used by TIGR - The Institute of Genomic Research.

The main objective of our work is to develop a set of trimming procedures
emphasizing good clustering results. We have two previous works which presents
studies that we performed to achieve this goal.

In the first one [6], we introduced the idea of using independent artifact detec-
tion steps by processing Bos taurus ESTs, which were sequenced by the Cattle
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EST Project [7,8,9], with trimming procedures based on the SUCEST ones. In
the second work [10], we conducted a study on slippage artifacts and, as result,
we developed new algorithms to detect this artifact type.

In this work, we introduce a new set of trimming procedures that adopts
the “independent artifact detection steps” strategy and incorporates results of
our study about slippage artifacts. Therefore, it includes a new low quality trim-
ming procedure that was developed through exhaustive parameter testing of two
different algorithms.

We evaluated our trimming procedure set by processing SUCEST sequences
and comparing the clustering of the trimmed sequences with the project’s official
clustering [1,3].

2 New Trimming Procedure Set

In order to improve the EST trimming procedure and, thus, the clustering,
we built a new set of procedures to detect regions that do not belong to the
sequenced organism, or have low quality.

In this new set, the identification of different types of artifacts is independently
made. This means that the detection of one artifact has no effect on further
detections.

This strategy, introduced in previous work [6], is distinct from the one adopt-
ed by traditional trimming procedures, which execute their steps sequentially
using the output of one step as input for the next one.

The following steps are performed in our trimming procedure set: ribosomal
sequence discard, low quality identification, vector identification, adapter identi-
fication, poly-A/T tail identification, slipped sequence identification and, finally,
short sequences removal. Every step, except the last one, process the whole EST
searching for artifacts. The last step takes the list of artifacts and processes it to
identify, in the sequence, the region that will be preserved for further analysis.

2.1 Ribosomal Sequences Discard

Ribosomal sequences discard is performed through BLAST [11] of all ESTs against
a database populated with ribosomal sequences of organisms that are phyloge-
netically close to the sequenced organism. Every sequence that shows a hit with
e-value lower than or equal to 10−10 is discarded. This approach is identical to
the one used in the SUCEST project [3] and can be applied because ribosomal
sequences are highly conserved.

Building the database with sequences of organisms that are phylogenetically
close helps the BLAST searches on the detection task. Telles and da Silva [3] built
the SUCEST ribosomal database with sequences phylogenetically close to the
sugarcane obtaining good results. In previous work [6], we constructed a database
with ribosomal sequences originated in mammal organisms to detect Bos taurus
ribosomal sequences (Cattle EST Project) and the results were equally great.
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2.2 Low Quality Identification

Low quality identification is performed in two steps. In the first step, the sequence
is processed by a maximum subsequence algorithm [12, Section 5.8], similar to
the one implemented by phred [13,14]. We set up that algorithm using 11 as
minimum quality threshold.

After the maximum subsequence being found, we use a 10 bases sliding win-
dow to search regions that have an average probability error higher than or equal
to 20%. For each region found, we cut the sequence into two parts at the posi-
tion of minimum quality. Each part is processed by the maximum subsequence
algorithm.

The method and parameters were chosen after a exhaustive parameter testing
that evaluates two different algorithms: maximum subsequence (which was our
choice) and slidding window used by the SUCEST project. We compared the re-
sults of both algorithms with the ones of LUCY [5], which was run with default
parameters. Our choice lies on a configuration that is a little less stringent than
LUCY’s configuration but that increases the chance of obtaining more BLAST
hits (due to longer sequences) without harms the average sequence quality.
This alternative helps the gene fiding task without compromisses the clustering
quality.

2.3 Vector Identification

Vector identification is very simple and is performed by running the software
cross match [15] to align all sequences with the vector sequence. The alignment
is made with the parameters -minmatch 12 and -minscore 20. The resulting
aligned regions are considered as vector artifacts.

The parameters are similar to the ones used by Telles and da Silva, but our
vector detection criteria is much more simpler than their criteria. We tested this
simple alternative in previous work [6] and it showed results that were equivalent
to the ones obtained by the more complex procedure.

2.4 Adapter Identification

Adapter detection is similar to the one developed by Telles and da Silva. It uses
the software swat [15]. All sequences are aligned with the adapter sequence using
the parameters -gap init −5, -gap ext −5, -end gap −5, -ins gap ext −5,
-del gap ext −5 and a score matrix that scores every match with 1 and every
mismatch with −2. The alignments whose size is greater than or equal to the
adapter size minus 4 are identified as adapter artifacts.

The number subtracted from the adapter size to obtain the alignment min-
imum length must be configured in accordance to the size of the adapter that
was used in the project. In SUCEST, two adapters were used: one 11 and 16 bp
length. If the adapter is smaller than them, the number that will be subtracted
from the adapter size must be lowered to avoid false positives. On the other
hand, if the adapter is greater than the SUCEST ones, the number must be
increased to avoid false negatives.
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2.5 Poly-A/T Identification

Swat is also used in poly-A/T tail search. Using the same parameters of the
adapter identification step, the sequence are aligned with 500 bp sequences of
“A”s or “T”s.

Alignment regions showing scores of at least 10 are considered as poly-A/T
tail artifacts.

Like the vector identification phase, this step is simpler than the procedure
built by Telles and da Silva and it uses the same swat parameters. Our simple
procedure was also evaluated on previous work [6] and it showed equivalent
results, so we decided to adopt it.

2.6 Slippage Identification

Usually, normal trimming procedures do not consider slippage artifacts. Caused
by sequencing process problems, slippage is a region that presents an abnormal
distribution of echoed bases. These echoes result from reading chromatogram
regions that have many signal peaks for a single nucleotide.

Although echoed bases sometimes appear with a high background noise, signal
peaks are so high that base-calling softwares assign high quality values for bases
that do not exist. This phenomenon prevents the removal of these regions by
trimming methods based on quality.

In a previous work [10], we conducted a detailed research to develop new
algorithms to detect this type of artifact.

The slipped sequence detection is based on consecutive identical bases regions
identification. If a region in the sequence comprises at least 5 consecutive iden-
tical bases, it is identified as an echo region, otherwise as a normal region. Any
subsequence composed by at least 8 echoes regions that represent 25% or more
of its all regions is considered a slippage artifact.

2.7 Short Sequence Removal

After identifying all artifacts above, our trimming procedure ends with the iden-
tification of the sequence that will be used for clustering.

All artifacts found are masked and all non-masked regions are analyzed. Every
region that has size lower than 100 bases are discarded. Only the non-masked
region that has the highest quality sum is preserved. If there are two regions
with the same sum, the longest one is chosen. Finally, if both regions have the
same size, the method chooses the one that is closer to the 5′ end.

3 Procedure Set Evaluation

After implementing our trimming procedure set, we performed some test to eval-
uate it. In Section 3.1 we present the results that were obtained after processing
all SUCEST ESTs. In in Section 3.2 we show the results after clustering the
trimmed sequences and we compare them with the official SUCEST clustering.



New EST Trimming Procedure Applied to SUCEST Sequences 61

3.1 Trimming SUCEST Sequences

In order to evaluate our trimming procedure, we worked with the sequence set
produced on the SUCEST project. This set is compound of 291, 689 ESTs, which
have an average length of 829.44 ± 182.60 bp and an average quality of 23.15 ±
15.71. The execution sequence adopted in this work is pictured in Figure 1. Note
that, except for the short sequences removal step, any step can be performed in
any order because they are independent of the other step outputs.

291,689 Sugarcane ESTs
Average length 829.44   182.60 bp

Average quality 23.15   15.71

Average quality 33.25   14.78

Average length 472.05   121.68 bp
253,848 trimmed sequences

Ribosomal Sequences Detection

6045 slipped sequencesSlipped Sequence Identification

49,130 sequences with poly−T tail artifacts

52,050 sequences with poly−A tail artifacts
Poly−A/T Tail Identification

28,998 short sequences (size lower than 100 bp)Short Sequences Removal

224,579 sequences with pSport1−2 artifacts

253,953 sequences with pSport1−1 artifacts
Adapter Identification

215,256 sequences with pSport1 artifactsVector Identification

16,134 sequences with size lower than 100 bp
9 sequences were completely trimmed

279,508 low quality 3’ end artifacts
280,471 low quality 5’ end artifacts

Low Quality Identification

8,843 ribosomal sequences

Fig. 1. Steps of the new EST trimming procedure. Each step is independent of the
other and processes the whole sequence. The last step combines all detected artifacts
and extract the region that will be used for further analysis.

To perform the ribosomal sequences discard step, we built a BLAST database
with the same sequences used by Telles and da Silva. This database has the
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sequences GenBank AF168884 (Zea mays 18S rRNA), GenBank AF162215 (Pla-
tanus occidentalis 5.8S rRNA), and GenBank AF162215 (Lambertua inermis 26S
rRNA).

This step produced a list of 8, 843 ribosomal sequences. This number is slightly
higher than the number of ribosomal sequences found by Telles and da Silva
(8.473), which might be explained by the different BLAST versions used in both
works. We used the version released at September 5th, 2005 (2.2.11) while they
had worked with the version released at October 31st, 2000.

As the ribosomal sequences are completely discarded, we just used the re-
maining 282, 846 sequences, which were not marked as ribosomal, in the other
steps.

The low quality identification step found 5′ end low quality artifacts in 280, 471
sequences (99.16%), with average length of 48.71 ± 109.29 bp. The 3′ end low
quality artifacts were found in 279, 508 ESTs (98.82%), with average length of
288.84 ± 223.25 bp.

If in this step a sequence removal was executed, only nine sequences (0.003%)
would be discarded as a single low quality artifact that overlaps the whole se-
quence, but other 16, 134 sequences (5, 70%) would be discarded for being too
short (smaller than 100 bp) after removing low quality artifacts.

The set of 266, 703 sequences (94.29%) with length equal to or greater than 100
bp after removing low quality artifacts had an average length of 524.23± 119.66
bp.

The software cross match was used to align all sequences with pSport1 vector
sequence. Vector artifacts were found in 215.265 sequences (76.11%) and they
had an average length of 76.49 ± 108.15 bp.

Only 17 sequences (0, 006%) were identified as a single vector artifact and
7, 323 sequences (2.59%) would be discarded as short sequences.

SUCEST project used two adapters: pSport1-1 (ccacgcgtccg) and pSport1-2
(tcgacccacgcgtccg). They were aligned against all sequences using swat. The
first adapter appeared on 253, 953 sequences (89.78%) and the second appeared
on 224.579 sequences (79.40%). The average lengths were 10.48 ± 1.27 bp e
15.79 ± 0.77 bp, respectively.

Poly-A artifacts were identified on 52, 050 ESTs (18.40%). They had an aver-
age length of 31.45 ± 36.71 bp. Poly-T regions were less frequent, appearing on
49, 130 sequences (17.37%) and showing average length of 30.61 ± 32.80 bp.

A total of 47 sequences (0.02%) would be discarded for being to short after
removing poly-A tail. One of these sequences was marked as a single poly-A arti-
fact. In the case of the poly-T tail artifacts, only 4 sequences would be discarded
and there were no sequence marked as a single artifact.

Slippage artifacts appeared on 6, 045 sequences (2.14%) with average length
of 196.35± 139.19 bp. Only 293 ESTs (0.10%) would be discarded for being too
short. Just one of these ESTs was a single artifact that overlapped the whole
sequence.
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Table 1. Number of artifacts and average length for each artifact type. Average length
was not calculated for ribosomal artifacts because the method does not specify the
artifact limits in the sequence, it just marks the sequence for discard.

Artifact Number of artifacts Average Length
Ribossomal sequence 8, 843 –
5′ low quality end 280, 471 48.71 ± 109.29
3′ low quality end 279, 508 288.84 ± 223.25
pSport1 vector 250, 705 76.49 ± 108.15
pSport1-1 adapter 253, 953 10.48 ± 1.27
pSport1-2 adapter 224, 579 15.79 ± 0.77
Poly-A 52, 050 31.45 ± 36.71
Poly-T 49, 130 30.61 ± 32.80
Slippage 6, 986 196.35 ± 139.19

Finally, the last step grouped all artifacts and worked to identify the sequences
that would be preserved. The Table 1 shows the result of all previous steps
(Number of artifacts and average artifact length).

After processing the artifact list and discarding all sequences with length
smaller than 100 bp, a total of 253, 848 sequences (87, 03% of 291.689 sequeces)
were preserved. The average length was 472.05± 121.68 and the average quality
was 33.25 ± 14.78.

For the same initial set of sequences, the procedure set developed by Telles
and da Silva preserved 237, 954 ESTs (81, 56%), which had an average length of
641.57 ± 139.79 bp and an average quality of 27.74 ± 14.30.

As shown, our trimming procedure set discards less sequences than the pro-
cedure used on SUCEST project. Moreover, our sequences were shorter and had
higher quality than the official SUCEST trimmed sequences.

3.2 Clustering Trimmed Sequences

For the purpose of evaluating the quality of our trimming procedure, we decided
to cluster the trimmed sequences and compare the obtained clustering with the
official SUCEST one.

As the computer used to cluster the sequences had limited memory, we had
to select a smaller set of sequence to perform the cluster comparison. It was
done by sorting all sequences by name and selecting those that were in odd
positions, resulting in, approximately, half of the sequences of each library. The
145, 845 ESTs selected to be processed and clustered have an average length of
834.64 ± 182.26 bp and average quality of 23.08 ± 15.67.

After processing this set, SUCEST trimming procedure preserved 118, 991
sequences with average size of 643.82 ± 141.32 bases and average quality of
27.69±15.39. Our set of trimming methods preserved 126, 986 ESTs with average
size of 473.33 ± 121.66 and average quality of 33.25 ± 13.15. The Table 2 shows
the number of sequences, average length, and average quality for the testing set
and the sets of sequences processed by each method.
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Table 2. Number of sequences, average length, and average quality for the set of
selected sequences and for the sets of sequences processed by both methods (SUCEST
trimming procedure and our trimming procedure)

Sequences Average Length Average Quality

Selected sequences 145, 845 834.64 ± 182.86 23.07 ± 14.98
Processed by SUCEST methods 118, 991 643.82 ± 141.32 27.69 ± 14.30
Processed by our methods 126, 988 473.32 ± 121.66 33.25 ± 14.78

The numbers of Table 2 reinforces that our trimming procedure set preserves
more sequences but with smaller lengths and higher qualities when compared to
the official SUCEST trimmed sequences.

After trimming the sequences, we clustered both sets of processed sequences
using cap3 [16] with default parameters. The set of sequences processed by
the SUCEST methods generated a clustering (TS) with 20, 202 singletons and
16, 394 contigs (clusters with two or more sequences). The set processed with our
methods generated a clustering (BD) with 22, 479 singletons and 17, 486 contigs.

We compared both clusterings by their external consistency, internal consis-
tency, redundancy, and number of full-length clusters.

External consistency. External consistency evaluation searches for clustering
errors that put sequences originated on the same gene in separated clusters. For
this analysis, we conducted a BLAST search comparing each cluster consensus
(singletons and contigs) against all other consensus sequences from the same
clustering. Then, we processed the BLAST output searching for 200 bp long
alignment, with 75% minimum identity and located at maximum 10 bp far from
one of the consensus extremities. After that, for each clustering we computed the
number of overlaps that meet that criteria and divided it by O(n) = n(n− 1)/2,
that is the maximum number of possible overlaps for n clusters.

Clustering TS showed 1, 098 overlaps that are equivalent to 1.64 × 10−4% of
the possible overlaps. Clustering BD showed 1, 269 overlaps and they correspond
to 1.59 × 10−4% of the possible overlaps. We plotted the results of this analysis
in the graph of the Figure 2. Each point of this graph is result of the function
f(x) = x × [n(n − 1)/2]×100, where x is the number of overlaps found with x%
of identity.

Proportionally to the number of clusters of each clustering, the external con-
sistency analysis showed that the clustering BD has a number of clusters overlaps
lower than that shown by clustering TS. This could indicate that our cluster-
ing separates clusters that, in fact, might have been assembled together with a
frequency lower than that one of clustering TS.

Internal consistency. Opposed to the external consistency evaluation, the
internal consistency analysis searches for clustering errors that make sequences
to be grouped in the same cluster, but they should have been placed in different
clusters. For this evaluation, we collected data about the discrepant bases found
in contigs. A discrepant base is the one that differs from the consensus bases in
the same alignment column.
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Fig. 2. Distribution of overlaps found in the BLAST of “all against all” clusters of each
clustering [TS (dashed line) and BD (solid line)]. We considered only alignments that
were at least 200 bp long, with a minimum identity of 75%, and located at maximum
10 bp far from one of the consensus ends. The y axis indicates the percentage of
possible overlaps that were found in function of the overlap identity. The total number
of possible overlaps is given by n(n − 1)/2, where n is the total number of clusters.

For each clustered sequence we calculated its discrepant base percentage. Then
we evaluated the distribution of the sequences in function of their discrepancy.
The results of this analysis is plotted in the graph of Figure 3. The y axis
represents the percentage of discrepant in the group of clustered sequences with
x% of discrepant bases.

The graph of the Figure 3 exhibits that clustering BD has a greater percentage
of sequences with less than 2% of discrepant bases than clustering TS. It also
shows that clustering TS has more sequences with higher discrepancy levels.

Redundancy. The redundancy analysis was performed to extract one more
parameter for the clustering quality comparison. A high redundancy between
clusters might indicate that some of them should have been grouped together,
instead of being separated due to sequence quality.

To perform this analysis, every singleton and contig consensus sequences were
compared to each other (“all against all”) using cross match. The objective was
to identify which sequences would be grouped into “contigs” and which would
stay alone as “singletons”. We perform this test using two set of parameters and
criteria.

The first configuration was based on the one used in the SUCEST data analy-
sis [1]. Cross match was ran with parameters -penalty −10, -minmatch 32, and
-minscore 77. Every alignment of sequences, independently of its length, was
considered to group the sequences in “contigs”.
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Fig. 3. Distribution of discrepant sequences in function of their discrepant bases per-
centage. For each sequence that was participating of a cluster with size two or more
ESTs, we calculated its discrepant base (base that do not agree with the consensus
base in the same alignment column) percentage.

Using this criteria, clustering TS showed a redundancy level of 18.56% (25, 902
“singletons” e 3, 903 “contigs”), while clustering BD presented a redundancy level
of 14.51% (30, 749 “singletons” e 3, 417 “contigs”).

In the second configuration, cross match was ran with default parameters and
only alignments with at least 100 bp length and 98% of identity were considered
to be part of the “contigs”.

This configuration pointed out that clusterings TS and BD have redundancy
levels of 6.10% (32, 818 “singletons” e 1, 547 “contigs”) and 5.97% (35, 989 “sin-
gletons” e 1, 592 “contigs”), respectively.

Both redundancy tests brought out that clustering TS has higher redundancy
level than clustering BD. This is particularly interessant considering that clus-
tering BD has more sequences than clustering TS.

These results evidence that clustering TS may have more clustering errors
caused by its sequence average quality, which is lower than the clustering BD.

Full-length Clusters. Finally, the last test was performed to evaluate the
amount of full-length clusters that can be found in each clustering. The process
adopted to identify this kind of cluster was the same executed in the SUCEST
data analysis [1].

A full-length cluster is the one that besides having at least one BLAST hit
against nr with e-value lower than or equal to 10−40, have an alignment starting
in the first 15 positions of the subject sequence.
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Clustering TS exhibited 4, 941 (13.50%) full-length clusters. Decompounding
this set, 3, 702 full-length clusters were found in contigs and 1, 239 were found
in singletons.

Clustering BD had less full-length clusters, with 3, 526 found in contigs and 882
in singletons, totalizing 4, 408 (11.03%) full-length clusters. This result may be
a consequence of smaller average size of the sequences processed by our methods

4 Conclusion

During this work we developed a set of trimming procedures to achieve simplicity
and independence among steps.

Simplicity is related to the easiness of implementation and maintenance. In-
dependence among steps is linked to the easiness of configuration (you can turn
on/turn off any step without cause problems to any other) and, mainly, to the
possibility of trimming error reduction.

When one step depends on the output of the previous one, its results can be
influenced by an incorrect artifact identification. On the other hand, a trimming
method that works with the whole sequence, is not affected by this problem.

The results showed that every step of our trimming procedure was able to
identify its target artifact. The clustering built with the sequences processed by
it exhibited better external and internal consistency as well as lower redundancy
level than the resulting clustering using the sequences produced by the SUCEST
official trimming procedure.

The main difference between the two trimming sets is explained by our method
having a more stringent low quality trimming, making the clusters more reliable,
despite less full-length clusters.

Based on these analysis, we conclude that our trimming procedure suits proj-
ects that aim to produce more reliable clusters. If the objective is to discover
full-length clusters for gene annotation, we recommend a reduction of the low
quality trimming stringency.
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Comparative analysis of 82 expressed sequence tags from a cattle ovary cDNA
library. Mammalian Genome 9, 545–549 (1998)

10. Baudet, C., Dias, Z.: Analysis of slipped sequences in EST projects. Genetics and
Molecular Research 5(1), 169–181 (2006)

11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

12. Manber, U.: Introduction to Algorithms. Addison-Wesley, Reading (1989)
13. Ewing, B., Hillier, L., Wendl, M.C., Green, P.: Base-Calling of Automated Se-

quencer Traces Using Phred. I. Accuracy Assessment. Genome Research 8(3), 175–
185 (1998)

14. Ewing, B., Green, P.: Base-Calling of Automated Sequencer Traces Using Phred.
II. Error Probabilities. Genome Research 8(3), 186–194 (1998)

15. Green, P.: Phrap Homepage: phred, phrap, consed, swat, cross match and Repeat-
Masker Documentation (March 2004), http://www.phrap.org

16. Huang, X., Madan, A.: CAP3: a DNA sequence assembly program. Genome Re-
search 9, 868–877 (1999)

http://titan.biotec.uiuc.edu/cattle/cattle_project.htm
http://www.phrap.org


A Method for Inferring Biological Functions

Using Homologous Genes Among Three
Genomes

Daniel A. S. Anjos, Gustavo G. Zerlotini, Guilherme A. Pinto,
Maria Emilia M. T. Walter, Marcelo M. Brigido, Guilherme P. Telles,

Carlos Juliano M. Viana, and Nalvo F. Almeida

1Department of Computer Science, University of Braśılia, Braśılia, Brazil
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Abstract. In this work, we propose n3GC, a method to infer a par-
ticular biological function in an organism, by finding homologous genes
among three genomes, comparing the genes of the investigated organ-
ism with the genes of two other organisms, one having and the other
not having this function. Our n3GC method takes as input previously
identified families of paralogous genes in each one of the genomes, and
produces a three set Venn diagram, each set representing a genome. The
intersection of three (two) sets shows the families of similar genes having
strong similarities among the three (two) genomes. The gene families of
a genome not having strong similarities with any family of the other two
genomes appear outside the intersections. We have used our method to
determine potential pathogenic genes of the Paracoccidioides brasiliensis
fungus, comparing it with seven fungi, three at a time, one pathogenic
and the other non-pathogenic. To validate n3GC, we first investigate
the Pfam classification of the families belonging to the intersections and
compare with INPARANOID and 3GC methods.

1 Introduction

The great volume of genomic information generated by many sequencing genome
projects around the world allowed researchers to infer biological functions of an
organism based on already known biological functions of phylogenetic close or-
ganisms. Strong similarities among genes of different genomes indicate, to biol-
ogists, genes that could participate in specific cellular processes.

Generally, in order to infer related functions, researchers develop methods to
obtain paralogous and orthologous genes among genomes. Some of them iden-
tify orthology relationships by building or analyzing phylogenetic trees, but these
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methods require a great volume of computational resources, and are difficult to
implement [10]. Other methods are based on all-against-all gene comparisons
that are easier to implement and present good results [13,5,12,7,9,4,11,14]. Some
methods combine phylogeny and comparative genomics [6]. These previous meth-
ods may in principle be used to identify genes potentially involved in a specific
cellular process, but they would require subsequent processing using more com-
putational efforts. Instead, a method could be designed using three genomes
directly, the investigated genome and two other phylogenetically close genomes,
one having and the other not having the desired cellular process.

The objective of this article is to present n3GC, a method to infer a biological
function by obtaining homologous genes among three genomes simultaneously.
Our method takes as input previously identified families of similar genes in each
one of the genomes, and produces a three set Venn diagram, as illustrated in
Figure 1, each set representing a genome. The intersection of three (two) sets
shows the families of similar genes having strong similarities among the three
(two) genomes. The gene families of a genome not having strong similarities with
any family of the other two genomes appear outside the intersections. The idea
of producing a Venn diagram comparing three genomes was introduced by Telles
and co-authors [15] but the method used to obtain the diagram is different and
does not consider paralogy relationships inside one genome. We used our method
to determine potential pathogenic genes of the Paracoccidioides brasiliensis fun-
gus, comparing it with seven fungi, three at a time, one pathogenic and the
other non-pathogenic. To validate n3GC, we investigate the Pfam classification
of the families appearing in the intersections and compare these results with
INPARANOID and 3GC methods, obtaining good results.

(a)

(b)
(c)

Fig. 1. Venn diagram representing families with homologous genes (a) among three
genomes, (b) among two genomes, and (c) exclusive to one genome

In Section 2, we briefly describe the EGG method to find paralogs, that was
used to produce the families of similar genes inside one genome. Afterwards,
we present the 3GC method to find similar genes among three genomes. In
Section 3 we devise the n3GC method to identify homologous genes among three
genomes. In Section 4, we show how we used our method to determine potential
pathogenic genes of the Paracoccidioides brasiliensis fungus. Then we investigate
the produced families classifying the genes of an intersection according to their
Pfam [3] classification, and counting how many different Pfam classes appear in
each intersection. At last, we compare our results with INPARANOID and 3GC
methods. Finally, in Section 5 we conclude and suggest future work.
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2 EGG and 3GC Methods

First we describe the EGG method [1], that uses BLAST [2] scores of aligned
genes inside a genome to determine the families of paralogous genes. Informally,
we say that two genes are paralogous using some rule involving similarity and
alignment coverage. After defining initially when two genes are paralogous, the
most natural way of determining the families would be considering maximal sets
of pairwise paralogous genes. However, this could potentially leave outside a
family many genes which are paralogous to some but not to all paralogs of that
family. The EGG method, then, relaxes the paralogy rule to aggregate these
genes to the families.

Formally, two genes g and h are paralogous if, in the alignment of g and h
(and of h and g): the e-value produced by BLAST is less than or equal to some
threshold S; and at least P% of |g| and P% of |h| are covered by the alignment,
for some threshold P , where |g| is the number of residues of g.

The method uses a simple graph G = (V, E), having a non-empty set of
vertices V and a set of edges E to model the paralogy relationship. Each vertex
v ∈ V represents a gene gv, and each edge (u, v) ∈ E links two paralogous
genes gu and gv, according to the definition above. Besides G, the EGG method
computes another graph G′ = (V ′, E′) with V ′ = V and E′ obtained with weaker
thresholds S′ ≥ S and P ′ ≤ P .

The algorithm proceeds in three steps. On step 1, it finds all maximal cliques
in G, that is, the maximal sets of pairwise paralogous genes [1]. Let C1, C2, . . . , Ct

denote these sets. On step 2, it possibly adds genes (called aggregate genes) to
the sets found on step 1. A gene will be an aggregate to Ci if it does not belong to
Ci and is paralogous to at least one gene of Ci, using now the weaker graph G′.
Clearly, a gene may be added to more than one set. Then, on step 3, the method
breaks these ties by removing an aggregate gene from all sets to which it was
added, except the one to which it has the higher identity. This is obtained from
the average value of similarity between the aggregate gene and all the other genes
of the set, according to the corresponding e-value and the alignment coverage.

The resulting sets C′
1, C

′
2, . . . , C

′
t of paralogs will be families given as input to

our n3GC method, detailed in the next section. Before proceeding, we now give
a brief description of the 3GC method.

This previous method [15] computes a Venn diagram, as in our case, for three
genomes. However, it attempts to identify genes common to three or two genomes
by direct comparison between them, without considering paralogy inside each
genome. The method uses BLAST expectation to determine similarity between
genes of two different genomes. Then, using the average percent coverage pro-
duced by BLAST, it decides where each gene is to be placed in the Venn diagram
by considering: first, sets of three pairwise similar genes, which are placed in the
intersection of the three sets; then, pairs of similar genes, placed in the inter-
sections between two sets; and, finally, the remaining genes exclusive to one
genome.

Although presenting good results, this method may exhibit two disadvantages.
First, it may place many paralogous genes in the intersections but without any
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information identifying them as paralogs. Second, for instance, it may place pairs
of genes in the intersections between two genomes, whereas they should, from
the biological point of view, be better placed in the intersection of the three
genomes. This situation is illustrated in Figure 2, where the best hit similar-
ity relation determined by the method will actually prevent the set of genes
{g1, g2, . . . , g6} from being recognized as common to the three genomes, a result
which is expected if the paralogy relationship inside each genome is considered.
Proper identification of these potential situations after the application of this
method would require all-to-all gene comparisons between many combinations
of intersections. Since this identification is relevant to the purpose of inferring bi-
ological functions, our method n3GC shows how this can be done by identifying
paralogy before comparison among genomes.

best hit similarity

Genome B

Genome C

between genomes

Genome A

paralogy inside a genome
g2

g1

g3

g4

g5
g6

Fig. 2. A biological situation not considered by the previous 3GC method

3 The n3GC Method

First we define a hit as the result of the comparison to detect similarities between
two genes. We say that two genes g and g′ make a bi-directional best hit (BBH)
if g is the best hit of the comparisons among g′ and all the genes of the set
containing g and vice-versa. Considering two genomes G and G′, we determine
if a gene g of G is similar to a gene g′ of G′ if g and g′ make a BBH and both
alignments have e-value ≤ S and P% of alignment coverage. The thresholds S
and P are fixed, analogously to the steps described to identify paralogy between
two genes.

Before proposing the n3GC method, we make some definitions and notations.
We denote a gene g by lower case letters, and a family of paralogous genes F ,
by capital letters. For example, g ∈ F means that gene g belongs to family F .
A graph G = (V, E) is tripartite if V can be partitioned into three disjoint sets
Vi, i ∈ {1, 2, 3}, with no edge linking any two vertices of the same partition.

Now we detail our method. Its input is formed by the families of paralogous
genes of three organisms. The families of genome Gj is represented by F j

i , 1 ≤
j ≤ 3, and 1 ≤ i ≤ tj , where tj is the number of families in Gj .
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First, we use two tripartite graphs G and Gf to represent, respectively, the
relationship among the genes and among the families of paralogous genes of three
genomes. In the graph G = (V, E), we represent each gene of genome Gj by a
vertex g belonging to partition Vj ⊂ V , 1 ≤ j ≤ 3. There is an edge (g1, g2) ∈ E
between genes g1 ∈ Vi and g2 ∈ Vj , i �= j, if g1 and g2 make BBH. In the
experiments, we used BBH with thresholds S = 10−5, P ≥ 60 for proteins and
P ≥ 0 for translated ESTs. In the graph Gf = (Vf , Ef ), we represent each family
by a vertex F of the partition Wj ⊂ Vf , 1 ≤ j ≤ 3. Each edge (F1, F2) ∈ Ef

links families F1 ∈ Wi and F2 ∈ Wj , i �= j, if there are two genes g1 ∈ F1 and
g2 ∈ F2 making BBH.

We represent the results of the comparisons among the three partitions by
perfect triangle1, triangle, edge and node. We define a perfect triangle on the
Gf graph (Figure 3 (a)) as a set of three families F 1

1 ∈ W1, F 2
1 ∈ W2 and

F 3
1 ∈ W3, W1, W2, W3 ⊂ Vf , having genes g1 ∈ F 1

1 , g2 ∈ F 2
1 and g3 ∈ F 3

1 such
that g1 makes BBH with g2, g2 makes BBH with g3 and g3 makes BBH with g1.
We define a triangle on the Gf graph (Figure 3 (b)) as a set of three families
F 1

2 ∈ W1, F 2
2 ∈ W2 and F 3

2 ∈ W3, having genes g4, g
′
4 ∈ F 1

2 , g5, g
′
5 ∈ F 2

2 and
g6, g

′
6 ∈ F 3

2 such that g4 makes BBH with g′5, g5 makes BBH with g6 and g′6
makes BBH with g′4. Note that possibly gi = g′i, for i ∈ {4, 5, 6}. We define an
edge (F 1

3 , F 2
3 ), F 1

3 ∈ W1 and F 2
3 ∈ W2 on the Gf graph (Figure 3 (c)) if there

are two genes g7 ∈ F 1
3 and g8 ∈ F 2

3 such that g7 and g8 make BBH. Our method
finds perfect triangles, triangles and edges, following this order. A family not
involved in any perfect triangle, triangle or edge is a node (Figure 3 (d)).

F 2
1

F 1
2

(a)

(b)

(c)

g′
4

F 1
1

F 3
2

g1
g′
5

g3

g4
g2

g5

g6

g′
6

g8

g7

F

(d)
g

W1 W2 W3

F 1
3

F 2
2

F 2
3

F 3
1

Fig. 3. A tripartite graph with each partition marked by a square. Families are shown
inside circles. (a) A perfect triangle. (b) A triangle. (c) An edge. (d) A node.

After building graphs G and Gf , we use a greedy approach to find triangles
and edges corresponding to families having genes making BBH among three or
two families, respectively. A depth first search until depth 3 is made first on the
G graph from each gene of each partition to find perfect triangles, and after in
each family of each partition of the Gf graph to find triangles, in order to check
whether the search comes back to the initial vertex or family, as shown below.
1 Our definition is different from the COG[14] triangle definition.
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Method n3GC

Input: F 1
1 , F 1

2 , . . . , F 1
t1 , F 2

1 , F 2
2 , . . . , F 2

t2 , F 3
1 , F 3

2 , . . . , F 3
t3 , such that each F j

i ,
j ∈ {1, 2, 3} and 1 ≤ i ≤ tj , is a paralogs family, of each one of three organisms.

Output: perfect triangles, triangles, edges and nodes
1: {Find homologs among the three organisms}

Find all perfect triangles on Gf , removing these families from further analysis.
The removal is made “marking” the families belonging to the perfect triangles.

2: Find all triangles on Gf , removing these families from further analysis. The
removal is made “marking” the families belonging to the triangles.

3: {Find homologs among two organisms}
Find all edges on Gf , removing these families from further analysis. The removal
is made “marking” the families belonging to the edges.

4: {Find genes belonging to an organism}
Families not marked as perfect triangles, triangles or edges on Gf are considered
nodes.

The Venn diagram is generated by associating the total number of perfect
triangles and triangles to the intersection of the three sets, the total number of
edges to the intersection of the two corresponding sets, and the total number of
genes exclusive to one genome to the corresponding set. Lists of homologs among
the three organisms (triangles), homologs between two organisms (edges), and
genes exclusive to one organism (nodes) are also generated. These lists are stored
on files, and show the families involved in the homology relationships and the
genes used to determine homology among three families (if it belongs to a perfect
triangle or a triangle), homology between two families (if it belongs to an edge)
or a family exclusive to a genome (if it is marked as node). These informations
can be seen by clicking on the corresponding region of the Venn diagram.

4 Finding Potential Pathogenic Genes of P. brasiliensis

On the experiments, we compared the human pathogenic fungus Paracoccid-
ioides brasiliensis-Pb (6022 putative genes inferred from EST data [8]) with
seven fungi, being two human pathogenic - Candida albicans-Ca (6165 genes)
and Cryptococcus neoformans-Cn (6578 genes), and five non-pathogenic - As-
pergillus nidulans-An (9541 genes), Fusarium graminearum-Fg (11640 genes),
Magnaporthe grisea-Mg (11109 genes), Neurospora crassa-Nc (10082 genes), and
Saccharomyces cerevisiae-Sc (6305 genes). These comparisons can be used to in-
vestigate genes related to pathogenecity of the P. brasiliensis, a dimorphic fungus
that causes a prevalent mycosis in Central and Latin America. We compared the
P. brasiliensis putative genes with a pathogenic fungus and a non-pathogenic
fungus, which generated 10 comparisons among three genes. This work is part
of the Project Pb Genome, that sequenced 19, 718 ESTs, which generated 6, 022
genes of the P. brasiliensis. Now genes involved in the pathogenecity of this
fungus are under investigation. Due to the lack of genomic data we used the
assembled EST groups of the P. brasiliensis fungus.
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The Venn diagrams shown in Figure 4 (the numbers indicate families) report
the results of the comparisons among P. brasiliensis, each one of the pathogenic
fungi, C. albicans or C. neoformans, and the other five non-pathogenic fungi [16].
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Fig. 4. (a) P. brasiliensis, C. albicans and non-pathogenic fungi comparisons. (b)
P. brasiliensis, C. neoformans and non-pathogenic fungi comparisons.

Table 1 summarizes the execution times. These experiments were developed
on a PC Pentium 4 1.5GHz with 512MB memory.
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Table 1. Running times to identify homologs among P. brasiliensis, a pathogenic
fungus (Pf) (in each column) and a non-pathogenic fungus (in each line)

Time Ca Cn
Pb x Pf x An 8m30s 8m31s
Pb x Pf x Fg 9m50s 9m57s
Pb x Pf x Mg 9m22s 9m47s
Pb x Pf x Nc 8m56s 9m05s
Pb x Pf x Sc 6m18s 6m55s

In order to validate our method, we first computed the Pfam [3] functions
of the families identified by n3GC as triangles and edges. Pfam [3] is a data-
base of multiple alignments of proteic domains families. A proteic domain is
a region of a protein having a specific biological function. Pfam database was
chosen because it classifies a gene according to its biological functions. The fam-
ilies forming triangles and edges were investigated to verify if the corresponding
genes had the same Pfam classification. This indicates whether members of the
families identified by n3GC share the same protein family signature. The lower
the number of triangles and edges with different Pfam results, the better the
n3GC performance. In this case, n3GC method would be grouping families with
similar biological functions. The same methodology was used by Telles and co-
authors [15] to validate their method to find homologs among three genomes.

Table 2. Number of Pfam results compared with the number of triangles among P.
brasiliensis, C. albicans and S. cerevisiae genomes (columns 2 and 3), and number of
triangles among P. brasiliensis, C. neoformans and S. cerevisiae genomes (columns 4
and 5).

Pfam results triangles of Pb, Ca and Sc % triangles of Pb, Cn and Sc %
1 470 42,8 371 43,7
2 523 47,6 465 54,8
3 97 8,8 9 1,1
4 7 0,6 3 0,3
5 1 0,1 0 0
6 1 0,1 1 0,1

Total 1099 100 849 100

Table 2 presents the number of Pfam results and the number of triangles
among P. brasiliensis, C. albicans and S. cerevisiae (columns 2 and 3). Note
that 90, 4% of the triangles among these genomes present 1 or 2 Pfam results,
which indicates that the genes grouped on triangles have the same (42%) or
share two Pfam functions (47%). This table also presents the results of the Pfam
results and the number of triangles among P. brasiliensis, C. neoformans and
S. cerevisiae (columns 2 and 3). We can see that 98% of the indicated triangles
present 1 or 2 different Pfam results, being 43% with the same function and 54%
having two similar functions.
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Table 3 shows the number of Pfam results and the number of edges obtained
by n3GC among P. brasiliensis, C. albicans and S. cerevisiae. Note that 97, 4% of
the edges between P. brasiliensis and C. albicans presented 1 or 2 Pfam results, a
very good result which indicates that 33% of the edges identified by our method
has exactly the same biological function and 64% has two similar functions.
Comparing P. brasiliensis and S. cerevisiae we can see that all edges have 1
(20%) or 2 (80%) biological functions. At last, for C. albicans and S. cerevisiae
genomes, n3GC produced 99% of the edges having at most two similar functions,
being 76% with the same function and 23% with two similar functions.

Table 3. Number of edges by number of Pfam results P. brasiliensis, C. albicans and
S. cerevisiae

Pfam results Pb and Ca % Pb and Sc % Ca and Sc %
1 151 33,3 15 20,3 1502 76,21
2 291 64,1 59 79,7 454 23,03
3 8 1,8 0 0 10 0,51
4 2 0,4 0 0 3 0,15
6 0 0 0 0 1 0,05
7 0 0 0 0 1 0,05
14 1 0,2 0 0 0 0
19 1 0,2 0 0 0 0

Total 454 100 74 100 1971 100

Table 4. Number of different Pfam results and number of edges between P. brasilien-
sis and C. neoformans, P. brasiliensis and S. cerevisiae, and C. neoformans and S.
cerevisiae

. Pfam results Pb and Cn % Pb and Sc % Cn and Sc %
1 685 99,4 70 32,8 1056 99,7
2 2 0,3 141 66,2 3 0,3
3 0 0 1 0,5 0 0
4 0 0 1 0,5 0 0
5 1 0,15 0 0 0 0
6 1 0,15 0 0 0 0

Total 689 100 213 100 1059 100

Table 4 shows the number of different Pfam results and the number of edges
identified by n3GC among P. brasiliensis, C. neoformans and S. cerevisiae. We
can note that 99, 4% of the edges between P. brasiliensis and C. neoformans
presented only 1 Pfam result. The comparisons of P. brasiliensis and S. cere-
visiae indicated 99% of 1 (33%) or 2 (66%) Pfam results. C. neoformans and
S. cerevisiae presented almost all genes (99, 7%) with the same function. These
results suggest that our method correctly indicates groups of homologs.

Following, we compared some n3GC results with INPARANOID [13] (Ta-
bles 5 and 6). In this table, the column coherent groups shows the number of
INPARANOID orthologous groups entirely contained within n3GC groups.

At last, we compared our results with the results of the our previous 3GC
method [15] (Tables 7 and 8). In these tables, the column coherent groups shows
the number of 3GC orthologous groups entirely contained within n3GC groups.
We observe that n3GC joined paralogous genes separated before by 3GC.
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Table 5. Comparisons of the ortholog groups identified by INPARANOID and the
homologous families identified on the intersection of two genomes when n3GC is applied
on P. brasiliensis, C. albicans and S. cerevisiae genomes

Genomes Assembled ESTs n3GC % INPARANOID % Identical % Coherent %
or proteins homologs homologs groups groups

Pb x Ca 12037 3106 25,80 1474 12,25 1048 71,10 1056 71,64
Ca x Sc 12320 6140 49,84 7714 62,61 6024 78,09 6096 79,03
Sc x Pb 12327 2346 19,03 1378 11,18 84 6,10 854 61,97

Table 6. Comparisons of the ortholog groups identified by INPARANOID and the
homologous families identified on the intersection of two genomes when n3GC is applied
on P. brasiliensis, C. neoformans and S. cerevisiae genomes

Genomes Assembled ESTs n3GC % INPARANOID % Identical % Coherent %
or proteins homologs homologs groups groups

Pb x Cn 12600 3076 24,41 1468 11,65 1060 72,21 1064 72,48
Cn x Sc 12883 3816 29,62 5804 45,05 3690 63,58 3780 65,12
Sc x Pb 12327 2124 17,23 1378 11,18 144 10,45 778 56,46

Table 7. Comparisons of the ortholog groups identified by 3GC and n3GC among P.
brasiliensis, C. albicans and S. cerevisiae

Genomes n3GC 3GC % Identical % Coherent %
homologs homologs groups groups

Pb x Ca 1011 482 209,75 266 26,31 278 27,50
Ca x Sc 4261 5024 84,81 3014 70,73 3088 72,47
Sc x Pb 154 186 82,80 50 32,47 52 33,77

Pb x Ca x Sc 3755 5028 74,68 2790 74,30 2883 76,78

Table 8. Comparisons of the ortholog groups identified by 3GC and n3GC among P.
brasiliensis, C. neoformans and S. cerevisiae

Genomes n3GC 3GC % Identical % Coherent %
homologs homologs groups groups

Pb x Cn 1461 958 152,51 522 35,73 528 36,14
Cn x Sc 2276 3234 70,38 1382 60,72 1422 62,48
Sc x Pb 453 470 96,38 174 38,41 184 40,62

Pb x Cn x Sc 2957 4314 68,54 2175 73,55 2235 75,58

5 Conclusions

In this work we presented a new method, named n3GC, to infer biological func-
tions by identifying homologous genes among three genomes, taking as input
paralogous genes families of each one of the genomes. The EGG method [1] had
been used to identify families of paralogous genes, and is now incorporated to the
n3GC method, but another method could be used, as well, to identify paralogs.
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The results of n3GC can be visualized using Venn diagrams, in which each set
represents a genome. The number of homologs among the three genomes is shown
in the intersection of the three sets, the number of homologs among two genomes
is shown in the intersection of the corresponding two sets, and the number of
genes exclusive to one genome is shown in a specific set region. Clicking in each
region, details of the families and genes used to built the orthology relationships
can be seen [16].

Besides, our method was used to identify potential pathogenic genes of the P.
brasiliensis fungus, comparing it, three genomes at a time, with human patho-
genic fungi - C. albicans and C. neoformans, and five human non-pathogenic
fungi - A. nidulans, F. graminearum, M. grisea, N. crassa and S. cerevisiae. We
observe that the P. brasiliensis dataset consists of assembled ESTs, instead of
protein sequences as all the other organisms. Although we use this partial data
to derive homology relationships, we are aware that accuracy may be diminished.
The comparisons generated 10 Venn diagrams.

To validate the n3GC method we compared some of its results with the re-
sults of Pfam [3], INPARANOID [13] and 3GC [15]. Comparing outputs of n3GC
applied to P. brasiliensis, C. albicans and S. cerevisiae genomes, and outputs
of P. brasiliensis, C. neoformans and S. cerevisiae genomes with Pfam, we ob-
tained approximately 95% of the relationships having 1 or 2 Pfam results, that is,
genes identified as homologous by n3GC have the same or a similar Pfam biolog-
ical function, which suggests that our method is correctly indicating homology
relationships. When comparing our results with INPARANOID and 3GC we ob-
tained similar results, showing that the homology relationships were conserved.

Our method presented a good practical performance. The running time on a
PC Pentium 4 1.5GHz with 512MB memory was 9.5 minutes on the average to
each analysis of three genomes, with BLASTs already executed. Each genome
had on the average 8540 genes.

For future work we suggest to include other algorithms to identify families
of paralogs, such that we could offer on our site [16] a choice to the method
to generate the paralog families. Also, some parameters could be passed to the
program at execution, like values for the e-value and the coverage BLAST pa-
rameters. In the specific case of ESTs, these parameters could be optimized for
accuracy. An environment with n3GC execution directly from the site could be
easily developed. We initially included it but as we did not implement an effi-
cient system to allow multiple submissions, multiple requests used many com-
putational resources, and led to a long time or even to an interruption of the
services. So, a future task could be to manage multiple submissions. Particularly,
we could use distributed computation to implement the presented methods. An-
other useful work is to improve the visualization of the results produced by
the method, to facilitate analysis and interpretation of the obtained results is
another useful work. Finally, our method could be used to identify other po-
tential biological functions that could be investigated comparing genes of three
organism.
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Abstract. We propose a method for global validation of gene cluster-
ings. The method selects a set of informative and non-redundant GO
terms through an exploration of the Gene Ontology structure guided
by mutual information. Our approach yields a global assessment of the
clustering quality, and a higher level interpretation for the clusters, as
it relates GO terms with specific clusters. We show that in two gene
expression data sets our method offers an improvement over previous
approaches.

Keywords: cluster validation, external index, gene ontology, mutual
information.

1 Introduction

With the advent of DNA microarrays there has been a great deal of work on clus-
tering methods for the analysis of data from large-scale gene expression experi-
ments. The main idea behind these approaches is to find clusters of co-expressed
genes, providing biologists with genes regulated in a similar manner [9]. While
most of these approaches yielded useful analysis of gene expression data, the
evaluation of the biological relevance of the clusters is still a difficult task. There
is little guidance available for choosing a clustering method [8]. There is also
no established framework for evaluation of gene clusterings resulting from these
methods exists.

The biological interpretation of clusters has been addressed, for instance, by
comparing the results with available functional genomics data, such as provided
by the Gene Ontology (GO) project [2] (see Section 2.1 for more details). One
common approach is to search for GO terms (functional annotations) that are
significantly enriched within a cluster of genes [3,4]. Although this allows a bio-
logical interpretation of individual clusters of genes, it gives no global assessment
on the “quality” of a gene clustering (or a set of clusters) returned by a clustering
method.
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Recently, there have been proposals of global indices for the validation of
gene clusterings [6,10]. However, in contrast to the approaches in [3,4], these
validation methods provide no “biological” interpretation of their assessments.
Furthermore, they do not take several important features of GO into account.
For example, the GO structure (direct acyclic graph or DAG) presents a parent-
child relation, which implies that a term inherits all annotations of its immediate
descendent [1,11]. This makes the annotations of a GO term highly redundant
with respect to terms “near” in the GO DAG. The use of redundant terms
possibly introduces a bias in the global index, since contributions of GO terms
that have many siblings will have a higher weight [10].

Motivated by the limitations presented above, we present a method that pro-
vides a global validation measure of gene clusterings. The method works by
selecting a set of informative and non-redundant GO terms through an explo-
ration of the Gene Ontology structure with the mutual information measure [7].
By informative, we mean terms that help to discriminate between clusters in a
clustering. Additionally, by taking the parent-child relationship into account, our
method detects a list of non-redundant GO terms within the informative ones.
With this set of terms, we can calculate, as in [6,10], a global fitness measure of
the clustering. Furthermore, our method relates a set of informative GO terms
to a particular cluster, which provides a biological interpretation of the results.

1.1 Related Work

One of the first applications that used GO for evaluating groups of genes was the
so called GO Term Enrichment (TE) analysis. By means of a statistical test, such
as the Fisher exact test, one can estimate a p-value indicating whether a signifi-
cant fraction of genes in a cluster is annotated with a specific GO term [3,4]. This
approach has some limitations as it assumes independence between GO terms,
and it suffers from the multiple testing problem [18]. More recent methods [1,11]
take the dependencies of GO terms caused by the parent-child relations into
account. In particular, the Parent-Term Enrichment method (PE) [11] assumes
that whenever a particular term is enriched, so are its parents. Thus, it yields a
more refined selection of GO terms.

All these methods have been shown useful and have found widespread use in
the interpretation of individual clusters of genes. However, as previously men-
tioned, they do not produce a global assessment of how “biologically relevant”
a given gene clustering is.

A global index for evaluating gene clusterings with GO was presented in [10].
This index, based on an approximation of mutual information, is able to discrim-
inate between results of clustering methods from random cluster assignments.
In [6], an external index was proposed for a similar task. However, neither of
these two approaches account for any biological interpretation of the results. A
further extension of [10] was presented in [17], where an informative set of GO
terms is collected and the exact mutual information is computed. This method,
however, has a high computational cost. It is exponential in the number of se-
lected GO terms. Thus, in practice, only a small set of GO terms can be chosen.
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Putting our approach into perspective, it combines the characteristics of
“global indices”, such as [10], with the interpretability of the “local” approaches
such as [1,3,11]. Also, in contrast to [17], we constrain the selection of terms
within the GO structure, yielding a more efficient computational procedure. This
also makes the identification of redundant GO terms possible, which decreases
bias of the global index towards GO terms having many siblings.

2 Method

2.1 Gene Ontology

The Gene Ontology (GO) project is a collaborative effort to address the need for
consistent descriptions of gene products in different databases [2]. Three struc-
tured controlled vocabularies (ontologies) describe gene products in terms of
their associated biological processes, cellular components and molecular func-
tions in a species-independent manner—cellular component describes compo-
nents in which genes are active (e.g., rough endoplasmic reticulum); molecular
function contains concepts related to gene function (e.g., catalytic activity); and
biological process describes the processes that a gene can take part of (e.g.,
cellular physiological process).

More formally, a given Gene Ontology (GO) is represented by a directed
acyclic graph (DAG), in which each node ti in a set T = {t1, ..., tN} represents a
biological term (controlled vocabulary or GO term) and the edges stand for a set
of relationships R among these terms. A relationship R(ti, tj) ∈ R means that
term ti is a parent of term tj . Such a relation is interpreted as tj is a subclass
of ti—i.e., ti is a more general concept than tj . For instance, the biological term
“cell cycle” is related to the more specific terms “mitotic cell cycle” and “meiotic
cell cycle”.

A set of genes G = {g1, ..., gM} is related to a given GO by an annotation
set A, where A(ti, gm) ∈ A indicates that gene gm is annotated with term ti.
Genes often have multiple biological roles, so they are usually annotated with
several GO terms. Furthermore, the parent-child relation of GO implies that
genes annotated to a term are also annotated to all parents of this term. That
is, for all R(ti, tj) ∈ R, given a gene gm, A(tj , gm) → A(ti, gm).

2.2 Selecting Informative GO Terms by Mutual Information Gain

In order to select a set of non-redundant and informative GO terms, we explore
the DAG structure of GO and the parent-child relation. By informative terms
we refer to terms that help to discriminate a cluster from others in a clustering.
This can be measured with the mutual information, which is a general measure
of dependence between two random variables [7]. In our case, the mutual infor-
mation provides a systematic quantitative measure of the relationship between
cluster membership and GO term membership of a set of genes. We call redun-
dant terms the ones that annotate a similar set of genes. Recall the parent-child
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relation R(ti, tj), as ti also annotates all terms tj annotates, we expect that ti
is informative whenever tj is.

Our selection procedure—called MutSel—works bottom-up as follows. For a
given GO, a set of genes G and its respective annotation set A, we start with a
candidate collection of terms S with unitary sets, each one containing a leaf node
(a node of the DAG without descendants). Such a collection corresponds to the
most specific annotations present in GO for genes in G. From these we calculate
the gain in mutual information, with respect to the cluster membership, when
joining each set si ∈ S either with other adjacent (or neighboring) set or with
parent terms not included in the candidate sets S.

The set of adjacency relations, D, is defined by the parent-child relation, where
sets sp and sq are adjacent, D(sp, sq), if and only if there exists terms ti ∈ sp and
tj ∈ sq, such that R(ti, tj) ∈ R or R(tj , ti) ∈ R. At each step, we select the pair
of adjacent sets that yields the higher non-negative mutual information gain,
joining them in a new set of terms. This step is equivalent to looking for more
general terms in the GO DAG, which are more informative to the clustering
results. We repeat this step until no mutual information gain is possible.

More formally, let Xp be a discrete random variable with alphabet X = {0, 1}
representing the annotation of sp, where an observation x takes the value 1 if a
term in sp annotates it, or zero otherwise. Respectively, the random variable Y
with alphabet Y = {1, ..., K} represents the cluster assignment, where a obser-
vation y takes value k if it belongs to cluster k. The mutual information gain,
MIG(Xp, Xq|Y ), of joining two adjacent sets sp and sq in the context of cluster
membership Y is defined as

MIG(Xp, Xq|Y ) = MI(Xp ∨ Xq, Y ) − MI(Xp, Y ) − MI(Xq, Y ), (1)

where MI denotes the mutual information, and Xp ∨ Xq the variable resulting
in the union of sets sp and sq. The mutual information, MI, is defined as,

MI(X i, Y ) =
∑
x∈X

∑
y∈Y

P[X i = x, Y = y] log
(

P[X i = x, Y = y]
P[X i = x]P[Y = y]

)
, (2)

MI(X i, Y ) ≥ 0, with equality only if both variables X i and Y are independent.
For a given set of genes G, we have a set of observations {xi

1, ..., x
i
M}, where

xi
m = 1 if ti annotates gene m, 0 otherwise. Respectively, we have a set of

observations {y1, ..., yM}, where ym = k denotes that gene m belongs to cluster
k. From these observations, we can obtain the following estimates for computing
MI(X i, Y ),

P[X i = j, Y = k|G] =
1
M

M∑
m=1

1{xi
m = j}1{ym = k}, (3)

P[Y = k|G] =
1
M

M∑
m=1

1{ym = k} (4)

where 1 is a indicator function, j ∈ X and k ∈ Y.
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Figure 1 illustrates our method. On the left (Figure 1 (a)), we depict a simple
example of a DAG with 7 terms. In Figure 1(b), we display a table, where the
rows corresponds to the random variables X i and the columns the genes from
set G. An one in position (i, j) indicates that gene j is annotated with term i.
The last line, Y , indicates the assignment of genes to one of the two the clusters
considered. At each node of the DAG in Figure 1(a), we display the cluster counts
and the mutual information of the respective term. For example, in Term7, “1/3”
means that this term annotates one gene from cluster 1 and three genes from
cluster 2. The value 0.258 corresponds to the mutual information. Terms with
good discriminative power in relation to Y display a higher MI (e.g., Term2 and
Term7) than non-discriminative terms (e.g Term1 and Term4).
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Fig. 1. We depict on the left (a) an example of a simple DAG, on the top right (b) a
table describing the terms annotations to a set of 11 genes and on the bottom right (c)
a list of candidate join operations and the respective MIG

Starting with a collection S = {s1, ..., sP } such that sp = {tl} where tl is a
leaf from GO DAG, and D is the adjacency list, the algorithm works as follows:

1. while maxD(si,sj)∈D MIG(X i, Xj|Y ) ≥ 0 do
2. D(sp, sq) = argmaxD(si,sj)∈D MIG(X i, Xj|Y )
3. join(sp, sq)
4. update(D)

The algorithm returns a collection S of groups of GO terms. Given that we join
only parent terms, each of these groups constitutes a sub-DAG from GO. From
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these, we can select the most general terms, or the terms without any parent
node within a group sp as the representative term(s) of sp. All other terms in
the group can be considered as redundant, since they will carry the same or less
information than the representative terms. Furthermore, we can also relate a
given group of terms sp with a cluster in k′

k′ = argmax
k∈Y

MI(Xp, Y = k). (5)

Figure 1(c) illustrates a simple example of the method. There, we display
the MIG from joining candidate sets of terms. The selection method starts with
the leaf nodes Term5 and Term7. It then looks for neighboring terms, whose
unions with the leaves has non-negative MIG. For example, Term5 has Term3
and Term4 as parents. While joining Term4 and Term 5 (X4 ∨ X5) yields a
negative MIG, merging Term3 and Term5 (X3 ∨ X5) produces a positive MIG.
Thus, the latter are chosen. In the end, the method returns two groups of terms
{Term2,Term3,Term4,Term5} and {Term6,Term7}: the former is related to clus-
ter 1 and the latter to cluster 2. From these groups, the method selects Term2
and Term6 as representative terms, since they constitute the most general terms
within these groups; and the other terms in the sets {Term3,Term4,Term5} and
{Term7} are regarded as uninformative, since their annotations are also present
in the informative terms Term2 and Term6.

2.3 Validation Index

We use the index proposed in [10] to obtain a global measure of fitness by
comparing a clustering (partition) with the set of terms selected with MutSel.
Again, we have a random variable Y defining the clustering results, and the
random variables {X1, ..., Xp, ..., XP } corresponding to the annotation vectors
of group of terms selected above. The measure in based on the approximation
of the joint mutual information MIapp(X, Y ) as proposed in [10],

MIapp(X, Y ) =
P∑

p=1

MI(Xp, Y ). (6)

As discussed in [17], this approximation assumes independence between vari-
ables from X , which does not hold for most selections of GO terms, given the
high dependency between GO term annotations. An alternative to improve the
approximation of Eq. 6 is to select a set of terms with low annotation redun-
dancy. To tackle this problem, [10] introduces a parameter U , also based in
the mutual information, which excludes redundant terms from the computation.
The smaller the value of U is, the less redundancy will be allowed in the set
of terms X used for computing Eq. 6. Note that MutSel joins terms displaying
dependencies caused by the parent-child property of GO annotations in a prin-
cipled fashion, automatically excluding redundant terms and requiring no extra
parameter.
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To quantify deviation from randomness, we compute a z-score by repeating
the MutSel procedure with random cluster assignments as performed in [10].
The random clusterings are draw with the same cluster size distribution as the
evaluated clustering. More formally, from a given real clustering Y , its selection
of GO terms X , a random clustering Y r, its selection of GO terms Xr, then we
have,

zMIapp

=
MIapp(X, Y ) − μr

σr
. (7)

where μr = Mean(MIapp(Xr, Y r)) is the mutual information mean for L random
clusterings and σr = Var(MIapp(Xr, Y r))1/2 is the standard deviation of the
mutual information from L random clusterings. Hereafter, we refer to zMI as
the index proposed [10], and zMutSel as the index from Eq. 7 after selection of
GO terms by MutSel.

3 Experiments

We evaluate our method on two typical scenarios of gene expression data analy-
sis. First, we inspect the selection of GO terms in a differential gene expression
analysis, where a group of induced and a group of repressed genes after treat-
ment of yeast were identified [13]. This data, where two clusters of genes are
given beforehand and no clustering analysis is needed, allow us to evaluate the
“biological relevance” of the selection of GO terms, since the biological processes
behind these two clusters are well characterized. In the second experiment, we
perform a small scale comparison of clustering methods on a yeast cell cycle
data set. This data set has been manually labeled [5], allowing us to compare
our index and the prior approach [10] to the expert manual annotation.

3.1 Yeast Treatment (YT)

Gene expression of yeast was measured at particular time points after the treat-
ment with sulfometuron methyl (SM) [13]. We use a group of 241 induced genes
and a group of 121 repressed genes 4h after treatment with 5μg/ml of SM. This
clustering gives a simple scenario to evaluate our method, since the biological
processes behind theses two clusters are well characterized [13].

3.2 Yeast Cell Cycle (YCC5)

This dataset represents the expression levels of over 6,000 genes during two
cell cycles from Yeast measured in 17 time points [5]. We used a subset YCC5,
of 384 genes visually identified to peak at five distinct time points [5], each
representing a distinct phase of cell cycle (Early G1, Late G1, S, G2 and M).
Hereafter, this subset will be referred to as YCC5. The expression values of each
gene were standardized, which can enhance the performance of model-based
clustering methods, when the original data consists of intensity levels.
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In relation to the clustering methods, we performed analysis with hierarchical
clustering (Hier) [9], k-means [15], mixture of multivariate Gaussians with diag-
onal covariance matrix (MixGaus) [14] and mixtures of Hidden Markov models
(MixHMM) [16]. We set the number of clusters to be equal to 5 in all methods (as
this is the number of classes in the manual annotation). For k-means, MixGauss
and MixHMM, we initialize models randomly, perform clustering 15 times, and se-
lected the solution with minimal error criteria (see [16] for details). For k-means
and hierarchical clustering, we used Pearson correlation as a similarity measure.

4 Results

4.1 GO Term Selection

In order to evaluate our method with respect to the selection of “biologically
relevant” GO terms, we use the set of repressed and induced genes from the
study on response of yeast to a inhibitor of amino acid synthesis [13] introduced
in Section 3.1. Table 1 depicts the top five informative GO terms, from the
Biological Process GO, for the induced genes (first five rows), as well as for the
repressed ones (last five rows). The columns represent the GO term id, the GO
term name, the counts of induced genes, the counts of repressed genes, and the
mutual information.

As highlighted in [13], induced genes were mainly related to molecule trans-
port, amino acid biosynthesis and nitrogen metabolism. Indeed, all terms from
Table 1, with exception of “vitamin biosynthetic process”, are directly related
to these processes. Among the repressed genes, the study detected genes related
to carbohydrate and lipid biosynthesis, translation, cell cycle and ribosome. All
terms listed in Table 1 bottom are either directly related or more general terms
describing these processes.

Table 1. Top five informative GO terms, from the Biological Process GO, for induced
(top) and repressed (bottom) genes

Term ID Term Name #I #R MI

GO:0006807 nitrogen compound metabolic process 68 14 0.022
GO:0009110 vitamin biosynthetic process 14 0 0.022
GO:0006519 amino acid and derivative metabolic process 60 13 0.018
GO:0016769 transferase activity, transferring nitrogenous groups 11 0 0.017

GO:0009059 macromolecule biosynthetic process 16 36 0.051
GO:0051301 cell division 3 10 0.019
GO:0008610 lipid biosynthetic process 4 11 0.018
GO:0022613 ribonucleoprotein complex biogenesis and assembly 2 7 0.014
GO:0044265 cellular macromolecule catabolic process 9 14 0.013

We also compare, in the context of YT, the GO terms selected with MutSel
with the ones obtained with well-known methods, such as the Term Enrichment
(TE) [3] and the Parent-Term enrichment (PE) [11]. Table 2 summarizes this
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comparison. Its rows correspond to, respectively, the set of induced and repressed
genes in the dataset YT. The columns of the first part correspond to, respectively,
the number of terms selected with PE (p-value lower then 0.05), the number
of terms selected with MutSel, and the intersection of both sets. Likewise, in
following columns, we present the number of terms selected with TE (p-value
lower then 0.05), the number of all terms (informative and redundant) selected
with MutSel (we refer to this set as MutSelAll), and the intersection of both
sets.

Analyzing the results presented in Table 2, the informative terms selected by
our method are mainly a smaller subset of genes enriched in PE; 85% of terms
related to the cluster of induced genes and 81% of terms related to the cluster of
repressed genes detected by MutSel are also selected in PE. Likewise, the result
obtained with TE, which does not filter redundant terms, is comparable to the set
of all terms (informative and redundant) selected by MutSel. Again, the terms
indicated by the MutSelAll was a small subset of PE; 84% for the cluster of
induced genes and 100% for the cluster of repressed genes.

To further investigate the distinction between these methods, we measure
the redundancy of annotation of GO terms. For two GO terms, redundancy
can be measure by computing their mutual information (MI): redundant terms
have higher mutual information values. More precisely, we compute the mutual
information between all pairs of GO terms from a given set, select the maximum
MI for each term and average the values. For the cluster of induced genes, terms
obtained with MutSel, MutSelAll, PE, and TE had a MI mean of, respectively,
0.154, 0.219, 0.271, and 0.275. For the set of repressed genes, these values were,
respectively, 0.097, 0.168, 0.198, and 0.185. In both cases, the methodologies
taking the parent-child property into account displayed lower MI than their
counterparts. In general, MutSel presented lower MI values, which demonstrates
its ability to select a set of non-redundant terms.

Table 2. Comparison of the number of GO terms selected with MutSel, MutSelAll,
TE and PE in the analysis of dataset YT

PE MutSel ∩ TE MutSelAll ∩
Induced 41 13 11 79 39 33
Repressed 79 22 18 159 80 80

4.2 Comparison of Clustering Methods

We display in Table 3, for dataset YCC5, the rankings of the results from the four
clustering methods, according to the different indices. More precisely, we list the
rank of the methods according to zMI for five choices of U and zMutSel. After
each method name we display the mean values for 10 replications of the z score.
The last line corresponds to the corrected Rand (CR) [12] of comparing the clus-
tering assignment with the manual labeling. We used the original implementation
to obtain values from zMI (available at http://llama.med.harvard.edu/cgi/
cgi/ClusterJudge/cluster judge.pl).

http://llama.med.harvard.edu/cgi/ClusterJudge/cluster_judge.pl
http://llama.med.harvard.edu/cgi/ClusterJudge/cluster_judge.pl
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Table 3. We list the rank of the methods given by the indices zMI for several choices
of U , zMutSel, and CR comparing the clustering assignment with the manual labeling

Indices Rank 1 Rank 2 Rank 3 Rank 4

zMI U = 0.8 k-means (3.26) MixHMM (2.87) Hier. (2.86) MixGaus (2.32)
zMI U = 0.4 k-means (3.74) Hier. (2.91) MixHMM (2.87) MixGaus (2.26)
zMI U = 0.2 k-means (1.41) MixHMM (0.27) MixGaus (0.06) Hier. (-0.17)
zMI U = 0.1 k-means (0.86) MixGaus (0.37) MixHMM (0.36) Hier. (-0.1)

zMI U = 0.01 k-means (1.4) MixGaus (0.83) Hier. (0.64) MixHMM (-0.1)
zMutSel k-means (1115.3) MixGaus (1034.0) MixHMM (791.9) Hier. (616.3)
CR k-means (0.5) Hier. (0.46) MixGaus (0.43) MixHMM (0.39)

In general, k-means was ranked as the first one by all indices. In contrast, all
others ranking positions differed from index to index. One important result that
can be observed in this table is the impact of parameter U , the uncertainty index,
in the values obtained by zMI [10] and on the resulting rankings. For instance, for
higher U values, where some redundancy in annotation is allowed, hierarchical
clustering was ranked second; for more stringent values of U (i.e., 0.1 and 0.2), the
result of this algorithm presented a negative zMI score, which indicates results
obtained by chance. These results contradict the claims in [10], where the authors
state that the parameter U had small influence on the rankings of methods. In
comparison to zMI , zMutSel yielded higher z-scores. This is explained by the fact
that for random clusterings, MutSel makes very few merging operations. In this
situation, the resulting selection of terms is mainly composed of leaf terms with
few annotated genes. These terms have also very low information regarding Y . In
other words, MutSel can easily discriminate clusterings from random generated
ones.

No index was able to recover the ranking given by CR. Although we cannot
take the annotation used to calculate the CR as the actual and only “ground
truth” for dataset YCC5, since it was made via visualization of profiles, such an
annotation still provides a basis for comparing the clusterings. With regard to
zMutSel, the difference was mainly in the ranking of the hierarchical clustering.
An inspection of the contingency table, cluster against annotation labels, shows
that hierarchical clustering placed genes that correspond to two different classes
of the manual annotation (phases S and G2) into a single cluster, and had a
small cluster with 10 genes from all distinct classes. On the other hand, the
other clustering solutions had no such small cluster. This indicates that zMutSel

penalize this merge of groups S and G2 more strongly than CR. On the other
hand, zMI did not yield a definitive solution, while its rankings vary from values
of U . Furthermore, for lower Us, the value of the index for the hierarchical
clustering are negative, which indicates that its results are comparable with
a random solution. This strongly contradicts the CR values derived from the
manual annotation. As manual annotation is usually not provided in the majority
of gene expression data sets, zMutSel represents a better alternative to zMI , since
it requires no extra parameters, while it selects the set of most informative and
non-redundant terms.
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5 Conclusion

In this paper, we present the MutSel method for computing a global validity
measure of a clustering of genes. The main advantage of this method is a selec-
tion of relevant and non-redundant terms in relation to the evaluated clustering.
In order to do so, we use of a characteristic intrinsic to Gene Ontology (GO),
the parent-child relation, which makes annotations of GO terms highly redun-
dant. The set of informative and non-redundant GO terms resulted from the
application of MutSel yields not only a global index of “biological validity” of
the clustering, but it also relates GO terms to clusters yielding a “biological
interpretation” of individual clusters.

A comparison of MutSel to established methods for providing interpretation
of a cluster of genes, such as Term Enrichment analysis and Parent-Term En-
richment analysis, showed that MutSel mainly selects a set of GO terms also
found to be relevant by these methods. Furthermore, the set of selected terms
has a lower degree of annotation redundancy.

In relation to a global evaluation index for clusterings, we show that the
selection of terms from MutSel improves the mutual information-based measure
proposed in [10]. Our experimental results show that the choice of parameters of
the original index [10] has a great impact on the resulting rankings of clustering
methods. Thus, MutSel represents an improvement to the original proposal, as
it requires no parameter settings, while its results are consistent with manual
annotation of genes in a benchmark data set. As an extension of this work, we
plan to accomplish a large scale evaluation, including more clustering methods
and gene expression data sets.
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Abstract. An important field of application of string processing algorithms is the
comparison of protein or nucleotide sequences. In this paper we present an algo-
rithm capable of determining the dissimilarity (distance) of protein sequences
originating from protein binding sites found in the RS-PDB database that is a
repaired and cleaned version of the publicly available Protein Data Bank (PDB).
The special way of construction of these protein sequences enabled us to opti-
mize the algorithm, achieving runtimes several times faster than the unoptimized
approach. One example the algorithm proposed in this paper can be useful for is
searching conserved sequences in protein chains.

1 Introduction

String comparison algorithms have a wide range of applications. Among the most im-
portant ones is the comparison of protein and nucleotide sequences. These algorithms
work by aligning the two strings under comparison, while maximizing or minimizing
a cost function. Cost functions are usually defined by substitution matrices that assign
costs to character-pairs and a function describing additional costs when inserting gaps.
Some algorithms are guaranteed to find the optimum of the cost function; some heuristic
algorithms find a value very close to the optimum with a high probability. A brief sum-
mary of substitution matrices, gap penalty types and sequence comparison algorithms
is given below.

1.1 Scoring Matrices

Scoring matrices assign a score to all possible amino acid-pairs. The score can, for in-
stance, correlate with the probability that a particular amino acid-type transforms into
another amino acid-type due to mutation (PAM (Point Accepted Mutation) matrix). An-
other, frequently used scoring matrix type is BLOSUM (BLOcks SUbstitution Matrix)
[3]. Scoring matrices are usually square, and – in the case of amino acids – have at least
20 rows/columns, as in most cases they contain scores for the 20 standard amino acids.

1.2 Gap Penalty Types

There are several types of costs that can be assigned to insertion of gaps into an amino
acid sequence. A gap with a length of k characters can be penalized as follows:

M.-F. Sagot and M.E.M.T. Walter (Eds.): BSB 2007, LNBI 4643, pp. 93–100, 2007.
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– Linear gap penalty: g(k) = a · k;
– Affine gap penalty: g(k) = b + a · k;
– Other, but monotone (e.g., logarithmic) function: g(k) = b + a · log k. The appli-

cation of monotone functions has considerable advantages, as it was shown in [4].

1.3 Algorithms Finding the Optimal Alignment Score

After defining gap costs and replacement scores for amino acids, sequence alignment
algorithms are required to align two amino acid sequences so that an optimal alignment
score can be achieved. Smith-Waterman [6] and Needleman-Wunsch [5] algorithms
are an example; the former implements local, the latter global alignment. Given a cer-
tain scoring scheme, these algorithms always find the optimum score, but they are also
somewhat time-consuming. Note that in both of the mentioned algorithms, optimum
score means maximum. This is important to emphasize, because later a function capa-
ble of measuring the distance of sequences will be explained; in that case, the aim will
be to find the minimum distance.

The above mentioned algorithms are usually implemented as DPAs (Dynamic Pro-
gramming Algorithms).

1.4 Heuristic Algorithms

Heuristic algorithms do not necessarily find the optimal alignment score. Instead, they
try to keep the probability of missing a high-scoring alignment acceptably low, while
being at least one order of magnitude faster than the algorithms guaranteed to find the
optimal score mentioned before. BLAST (Basic Local Alignment Search Tool) [9] is
a basic example of such heuristic algorithm that is used to compare a single amino
acid sequence to a large sequence database. BLAST assumes that a high-scoring local
alignment contains two short (e.g., with a length of three amino acids) very similar
subsequences with a high probability.

There were several improvement attempts for the original BLAST algorithm; exam-
ples are Gapped BLAST and PSI-BLAST [7].

1.5 Aim

Our purpose was to implement a function that measures the distance (dissimilarity)
of two amino acid sequences extracted from ligand binding sites. The sequences were
constructed in a way described in Section 2.2. This construction of sequences enabled
us to optimize the distance function, drastically improving (reducing) required runtime.

A distance function on a given set (in our particular case, this set contains protein
chains) has to satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity)
2. d(x, y) = 0 if and only if x = y (identity of indiscernibles)
3. d(x, y) = d(y, x) (symmetry)
4. d(x, z) ≤ d(x, y) + d(y, z) (subadditivity/triangle inequality)
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2 The Algorithm

As our algorithm works specifically on amino acid sequences originating from binding
sites found in the RS-PDB database [1], it is necessary to define how these sequences
were extracted from the database.

2.1 The Definition of Binding Sites

Binding sites are defined as a set of atom-pairs; one atom belongs to some protein
(described by amino acid sequence), and one atom to some ligand in each. Distance
of the two atoms - with some tolerance - has to be equal to the sum of Van der Waals
radii calculated for the atoms (depending on their type). By using this definition for
binding sites, all amino acids from a given amino acid sequence that have at least one
atom contained in an atom pair-set (describing some binding site) can be marked. These
amino acids are called binding amino acids. Binding sites were extracted from the RS-
PDB database described in [1], [2].

A somewhat ”typical” binding site found in PDB entry 1QD6 can be seen on
Figure 1; the protein part is an enzyme from Escherichia coli.

Fig. 1. A binding site visualized from PDB entry 1QD6

2.2 Amino Acid Sequence Representation

By amino acid sequence we mean sequences consisting of amino acids connected by
peptide bonds that are of maximal length (i.e. they cannot be continued with further
amino acids on either end). It has to be noted that multiple amino acid sequences might
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occur in the immediate vicinity of a single binding site. In this paper, however, our goal
is to deal with single amino acid sequences, defining their distance and proposing an
algorithm capable of calculating this measure.

A binding amino acid is an amino acid if it has at least one common binding atom-
pair with a ligand. A binding amino acid sequence is an amino acid sequence that
contains at least one binding amino acid.

Binding amino acid sequences are extracted from protein binding sites as follows:
A string is assigned to each amino acid sequence binding to some ligand, the char-

acters of which correspond to amino acids of the given sequence. In this string, amino
acids participating in the bond are indicated by their one-character code; non-binding
amino acids are indicated by ′−′ characters. As our purpose was to deal with only bind-
ing sections, we omitted pre- and postfixes of amino acid sequences purely consisting of
non-binding amino acids (or, according to our current notation, ′−′ characters). Hence
all the strings constructed this way start and end with a binding amino acid.

Binding amino acids can be considered to be given weights to emphasize their sig-
nificance. Non-binding amino acids are aggregated into one symbol (here, the ′−′ char-
acter).

Example. A binding amino acid sequence constructed and transformed the way de-
scribed above (from PDB entry 2BZ6) is shown below. Note that the vast majority of
the amino acids are non-binding:

H − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
− − − − − − − − − − −TT − −D − − − − − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
− −− −− − −− − −− − −− − −− −− − −P − −− − −− − −− − −− − −−
−DSCK −−S −−−−−−−−−−−−−−−−−V SWGQGC −−−−−−G

The motivation (or biological justification) for this representation is the usage of
binding amino acids for marking start/endpoints of possible conserved sequences (mo-
tifs). A possible application might be the clustering of similar (low-distance) binding
sites while (at the same time) finding evolutionally related sequences.

2.3 Algorithm Definition

For measuring the distances of binding sections of amino acid sequences constructed
the way described above, we used a modified version of the algorithm used for cal-
culating Levenshtein-distance. The modifications involved assigning different costs to
gaps depending on where they are inserted, while amino acid mismatches were simply
penalized by the value 1.

The costs of aligned binding and non-binding amino acids were the following:

– The cost of two aligned, different amino acids is 1.
– The cost of aligned, matching amino acids is zero.

Gaps were penalized as follows:

– Insertion of a gap with a length of one unit (one amino acid) costs gp (gap penalty),
if the gap is aligned with a non-binding amino acid in the other sequence. If a gap
is aligned with a binding amino acid, its cost is 1.
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– Insertion of gaps at the end of sequences is only penalized if they are aligned with
binding amino acids. Gaps inserted at either end of a sequence have a zero cost, if
they are aligned with non-binding amino acids. The linear gap penalty used in our
algorithm will be furthermore referred to as GP .

According to the costs defined above, the rules applied during filling the first and last
rows/columns of the matrix used by the DPA have also been changed as well.

A D matrix is constructed consisting of L1 + 1 columns and L2 + 1 rows, where L1
and L2 denotes the length of the two sequences (seq1, seq2) in comparison.

D[i, j] means the minimum cost of transforming the i-length prefix of seq2 to the
j-length prefix of seq1.

Initialization of the D matrix is performed according to the following rules:

D[0, j] =

{
D[0, j − 1] + 1 if seq1[j] �=’-’, otherwise

D[0, j − 1]

D[i, 0] =

{
D[i − 1, 0] + 1 if seq2[i] �=’-’, otherwise

D[i − 1, 0]

Rules that determine filling of matrix cells:

x =

⎧⎪⎨
⎪⎩

D[i − 1, j] if seq2[i] =’-’ and j = L1, otherwise

D[i − 1, j] + GP if seq2[i] =’-’, otherwise

D[i − 1, j] + 1.

y =

⎧⎪⎨
⎪⎩

D[i, j − 1] if seq1[j] =’-’ and i = L2, otherwise

D[i, j − 1] + GP if seq1[j] =’-’, otherwise

D[i, j − 1] + 1.

z =

{
D[i − 1, j − 1] if seq1[j] = seq2[i], otherwise

D[i − 1, j − 1] + 1

D[i, j] = min(x, y, z).

For easier understanding of the motivation behind the rules above, we can consider
all sequences to be concatenated with a sequence consisting of an infinitesimal number
of non-binding amino acids on both ends. Hence, a zero-length amino acid sequence
can be considered an infinitesimally long sequence consisting of non-binding amino
acids. This makes sense because we do not want to penalize gaps if they are inserted at
either ends of amino acid sequences, and a possible way of achieving this is inserting
an infinite number of imaginary non-binding amino acids on both ends of sequences.

It might be interesting to notice that the quantity determined by the above algorithm
fulfills the criteria for being a metric – this is why we take the courage to call it ”dis-
tance”. The proof of the metric property is very similar to that of Levenshtein distance.
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3 Optimization

The optimization of the algorithm is based on the observation that sequences con-
structed the way described in Section 2.2 usually contain fairly long subsequences con-
sisting of non-binding amino acids. This equals to long subsequences consisting of ’-’
characters.

It can be proven that, using the above defined costs for amino acid mismatches and
gaps, determining the value of matrix cells (in the D matrix that is used by DPA for
distance calculation) is rather easy at cells that are located at the intersection of two
subsequences consisting of non-binding amino acids: in this case, the only choice is to
step diagonally.

This can be proven if we consider that at the intersection of two non-binding amino
acids, the DPA algorithm chooses the minimum from the following values when filling
D[i, j]:

⎧⎪⎨
⎪⎩

D[i − 1, j − 1] (diagonal step)

D[i, j − 1] + GP

D[i − 1, j] + GP

If either D[i, j − 1] or D[i− 1, j] contained a significantly lower value than D[i− 1,
j−1], the DPA would of course not choose the latter for D[i, j]. In the following section
we prove that (using the costs defined in Section 2.3) neither D[i, j − 1] nor D[i − 1, j]
can contain a value that is smaller than D[i − 1, j − 1] by more than GP (which has
been defined as the cost of gap inserted aligned with a non-binding amino acid).

As it was already mentioned, D[i, j] contains the minimum cost of transforming the
i-length prefix of seq2 to the j-length prefix of seq1. If we know that the i-th character
of seq2 corresponds to a non-binding amino acid (indicated by ’-’), it is always true that

D[i − 1, j] − GP ≤ D[i, j];

in other words, taking into account one more non-binding amino acid in an arbitrary
sequence (in our case, seq2) during DPA calculation can only reduce the previously
calculated minimum by GP . This ”reduction” only applies if the other sequence (in our
case, seq1) also contains a non-binding amino acid at position j.

For symmetry reasons, the equation above holds also if we swap the indexes i and j
and write

D[i, j − 1] − GP ≤ D[i, j].

As these equations apply for any valid i and j indexes in the DPA matrix D (except
for the first and last rows and columns), we can express D[i, j − 1] and D[i − 1, j] in
terms of D[i − 1, j − 1]:

D[i − 1, j] − GP ≤ D[i, j] =⇒ D[i − 1, j − 1] − GP ≤ D[i, j − 1],

and similarly,

D[i, j − 1] − GP ≤ D[i, j] =⇒ D[i − 1, j − 1] − GP ≤ D[i − 1, j].
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Now we can state that our algorithm chooses the minimum of the following values:

⎧⎪⎨
⎪⎩

D[i − 1, j − 1]
D[i, j − 1] + GP ≥ (D[i − 1, j − 1] − GP ) + GP = D[i − 1, j − 1]
D[i − 1, j] + GP ≥ (D[i − 1, j − 1] − GP ) + GP = D[i − 1, j − 1]

This means that we do not have to calculate each cell located at the intersection
of subsections consisting of non-binding amino acid sequences; instead, we can copy
values diagonally.

Note that the first and last rows and columns of the DPA matrix D cannot correspond
to a non-binding amino acid in either sequences. This is due to the way of construction
of the sequences that have to begin and end with a binding amino acid as described in
Section 2.2.

If the amino acid sequences under comparison contain non-binding amino acids in a
high proportion (which is usually the case), calculation of the defined distance can be
speeded up significantly: intersections of two subsequences consisting of non-binding
amino acids can be entirely skipped, copying values diagonally throughout the whole
intersection.

The main principle behind the optimized algorithm presented here is somewhat sim-
ilar to Ukkonen’s approach [10]. Changes in the initialization and in the calculation
of first and last rows and columns of the DPA matrix makes the presented algorithm
unique. This is a consequence of taking amino acid sequences extracted from protein
binding sites as an input and not simply arbitrary strings.

4 Runtime Measurements

Reduction in runtime is roughly proportional to the number of matrix cells located at
the intersection of non-binding subsequences, compared to the size of the whole D
DPA matrix. However, to get a real picture about runtime improvement, it is necessary
to apply the original and the optimized algorithm on a sample database consisting of
real-world data. For this purpose we used sample databases consisting of protein chains
obtained from 1000, 2000 and 5000 binding sites; all possible protein chain-pairs were
compared to each other, resulting in approximately

(1000
2

)
,
(2000

2

)
and

(5000
2

)
compar-

isons. The sample databases were constructed based upon the RS-PDB database. A few
measurements regarding runtime improvement are given in Table 1.

Table 1. Runtimes of original and optimized versions of the algorithm(measured on a hardware
containing a 3 GHz Pentium 4 processor)

Sample DB size Original algorithm Optimized algorithm Improvement factor
1000 entries 180 seconds 36 seconds 5.00
2000 entries 654 seconds 140 seconds 4.67
5000 entries 4340 seconds 891 seconds 4.87
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5 Conclusion

Our main result is using binding residues for marking possibly significant amino acids
in the sequence-given protein chain. All binding amino acids of a protein sequence are
marked as significant; other amino acids are aggregated into one symbol. This special
way of construction of amino acid sequences made the implementation of an optimized
sequence comparison algorithm possible. Note, that we intend to apply this description
only for analyzing the ligand-binding properties of protein structures.

A possible application might be the clustering of similar (in other words, low-distance)
binding sites, or finding evolutionally related sequences.
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Abstract. In the recent past, RNA structure comparison has appeared
as an important field of bioinformatics. In this paper, we introduce a
new and general intermediate model for comparing RNA structures: the
Maximum Arc-Preserving Common Subsequence problem (or Mapcs).
This new model lies between two well-known problems – namely the
Longest Arc-Preserving Common Subsequence (Lapcs) and the Edit
distance. After showing the relationship between Mapcs, Lapcs, Edit,
and also the Maximum Linear Graph problem, we will investigate the
computational complexity landscape of Mapcs, depending on the RNA
structure complexity.

Keywords: RNA structures, arc-annotated sequences, motif extraction.

1 Introduction

In computational biology, the understanding of biological mechanisms is fre-
quently induced by sequences comparison. However, in the context of RiboNu-
cleic Acid molecules (RNA), one cannot focus only on sequences. Indeed, it is
now clearly established that the conformation of an RNA molecule partially de-
termines its function and therefore, RNA comparison has certainly to take into
account both the sequence and the structure. From a combinatorial point of
view, an RNA molecule may be described by the sequence of its bases i.e., a
single strand composed of the nucleotides A, C, G and U (also called the primary
structure), together with the set of hydrogen bonds that connect pairs of bases.
Those pairings induce a specific conformation, usually called secondary structure
if it can be drawn planarly, and tertiary structure otherwise.

At a theoretical level, the RNA structure comparison problem has been ad-
dressed with different paradigms allowing flexibility on the comparison criteria
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[1,5,6,7,10,13,15]. Nevertheless, they all rely on the concept of structure compar-
ison. In order to compare two RNA structures, one has to consider a set Δ of
operations on bases and/or hydrogen bonds. Given such a set Δ, comparing two
RNA structures usually reduces to finding a series of operations of Δ – an edit
script – that transforms one structure into the other. Providing a cost for each
operation of Δ allows us to evaluate the cost C of any edit script by summing
the cost of all operations of the edit script. Then, referring to the standard par-
simony criterion, the goal is to find the edit script transforming one structure
into the other that minimizes the total cost C.

Existing paradigms mainly differ in the set of allowed operations: some con-
sider only operations that can behave separately on bases and on hydrogen
bonds, whereas others take into account operations that can act separately or
simultaneously on bases and hydrogen bonds. In the past few years, essentially
due to the increase of the number of determined RNA structures, their com-
parison has become all the more important. Unfortunately, for most paradigms,
comparing such structures turns out to be an intractable problem. Nevertheless,
recent research [11,16,18] has shown that relaxing the constraints on the preser-
vation of the primary structure makes the RNA structure comparison problem
tractable for more general cases including some types of tertiary structures.
However, a certain gap lies between simplistic and sophisticated paradigms. The
former ones only use the structure in order to constrain the possible edit scripts
over a set of simple operations ; for instance, the conservation/loss of a hydrogen
bond is not considered in the similarity computation. On the contrary, the latter
ones consider more biologically relevant operations and their associated costs ;
for instance, a simultaneous deletion of a hydrogen bond together with one or
two of its incident bases is considered as a single operation, to which a specific
cost is assigned. However, the existence of such operations in the model makes
the problem become hard even for very restricted structures.

In this article, we introduce an intermediate paradigm, called Maximum Arc-
Preserving Common Subsequence, or Mapcs. Mapcs uses the structure both in
order to constrain the possible edit scripts and to estimate the similarity between
two RNA structures, but with operations simpler than the ones of sophisticated
paradigms (more precisely, Mapcs can be seen as a more realistic extension
of the well-known Lapcs problem [10], while being simpler than Edit). The
reader should notice that Mapcs differs from the sequence-structure alignment
problem defined by Bafna et al. [2] since arcs, that have to be preserved, add
constraints on the possible edit scripts. After some preliminaries and definitions,
we first describe how the Mapcs problem is related to the Lapcs and the Mlg
problem, introduced in [9]. We then study the computational complexity of the
Mapcs problem. This study is another step towards establishing more precisely
the complexity landscape of the RNA structure comparison problem.

2 Preliminaries and Related Works

From a combinatorial point of view, one can distinguish two types of modeling
allowing for various flexibility and precision in the encoding of RNA structures:
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(i) a representation that includes both the nucleotide sequence and the hydro-
gen bonds, called arc-annotated sequence, originally introduced by Evans [10],
and (ii) representations using graphs, which do not necessarily take into ac-
count the precise label of the nucleotides that compose the sequence, such as
2-interval graphs [19] and linear graphs [9]. We will be more interested here
in arc-annotated sequences and linear graphs (intensively studied in the recent
past [1,5,6,7,10,13,15]).

2.1 Arc-Annotated Sequences : Problems Edit and Lapcs

Given a finite alphabet Σ, an arc-annotated sequence is defined by a pair
(S1, P1), where S1 is a string on Σ∗ and P1 is a set of arcs connecting pairs
of characters of S1. In reference to RNA structures, we will refer to the char-
acters as bases. The pair (S1, P1) is called an RNA arc-annotated sequence if
S1 ∈ {A, C, G, U}∗, and each arc of P1 connects either bases A and U, or bases C
and G. Any base with no arc incident to it is said to be free. Usually, five com-
plexity levels reflecting the structure of the arcs are considered [10]: (1) Plain
– there is no arc, (2) Chain – no base is incident to more than one arc and no
two arcs are crossing or nest, (3) Nested (Nest) – no base is incident to more
than one arc and no two arcs are crossing, (4) Crossing (Cros) – no base is
incident to more than one arc and (5) Unlimited (Unlim) – no restriction.

Those five levels respect an obvious inclusion relation denoted by the ⊂
operator: Plain ⊂ Chain ⊂ Nested ⊂ Crossing ⊂ Unlimited. Notice
that the absence of arcs makes Plain a very low informative level and, since
Plain ⊂ Chain, it is of little interest in the context of RNA structure com-
parison and will not be considered in this paper. In order to compare arc-
annotated sequences, we consider the set of operations (and their associated
costs) initially introduced in [17]. This set is composed of four substitution oper-
ations which induce renaming of bases in the arc-annotated sequence: base-match
(wm : Σ2 → IR), base-mismatch (wm : Σ2 → IR), arc-match (wam : Σ4 → IR),
arc-mismatch (wam : Σ4 → IR). Moreover, it also contains four deletion oper-
ations which induce deletion of bases and/or arcs, which we list together with
their associated cost:

base-deletion (wd : Σ → IR) →
arc-breaking (wb : Σ4 → IR) →
arc-removing (wr : Σ2 → IR) →
arc-altering (wa : Σ3 → IR) → or

The edit distance between two arc-annotated sequences (S1, P1) and (S2, P2)
is defined as the minimum cost of any edit script from (S1, P1) to (S2, P2). The
problem consisting in finding this distance is called Edit. To any edit script from
(S1, P1) to (S2, P2) corresponds an alignment of the bases of S1 and S2 such that
(i) any base which is inserted or deleted in a sequence is aligned with a gap (in-
dicated by −) and (ii) any two bases (one per sequence) which are (mis)matched
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are aligned together. As illustrated in Table 1, Lin et al. proved in [17] that
finding the edit distance between an arc-annotated sequence of Crossing type
and one of Plain type (denoted as Edit(Cros, Plain)) is MAX-SNP hard.
Thus, any harder problem (in terms of restriction levels) is also MAX-SNP hard.
Moreover, they gave a polynomial-time dynamic programming algorithm for the
problem Edit(Nest, Plain). Blin et al. [6] showed that Edit(Nest, Nest) is
NP-complete.

The Lapcs problem was introduced by Evans in [10], and can be defined
as follows: given two arc-annotated sequences (S1, P1) and (S2, P2), find the
alignment of S1 and S2 which maximizes the number of matched positions and
that satisfies the following conditions: for any arc (i, j) in P1 (resp. in P2), if bases
i and j are both matched to bases of S2 (resp. S1) – say p and q – then (p, q) is an
arc in P2 (resp. P1). In other words, an arc cannot be away from the alignment
if none of its incident bases is away too. The computational complexity of the
Lapcs problem has been studied in [10,15], and the main results are summarized
in Table 1. Of importance here is the result of Blin et al. [7], who proved that
the Lapcs problem can actually be seen as a very specific case of the Edit
problem. More precisely, Lapcs can be seen as a particular case of Edit where
the cost system for edit operations is the following: wr = 2wd = 2wa, and
all substitution operations and arc-breakings are prohibited with an arbitrary
high cost. The main idea is to penalize deletion operations proportionally to the
number of bases that are deleted.

2.2 Linear Graphs and the Mlg Problem

As mentioned previously, one possible way of representing RNA structures is
by means of linear graphs [9]. A linear graph of order n is a vertex-labeled
graph where each vertex is labeled by a distinct integer from {1, 2, . . . n} (the
order of the vertices is induced by the labels) and is of degree at least one.
Any edge between two vertices i and j, with i < j, may be defined as the pair
(i, j). Linear graphs thus represent RNA structures in which only the hydrogen
bonds are considered – the identity of the bases are ignored. Two edges of a
linear graph are called independent if they do not share a vertex. Similarly
to arc-annotated sequences, the four levels of arc structures Chain, Nested,
Crossing and Unlimited may be used in this model.

In order to compare linear graphs, we define the notion of occurrence of one
linear graph in another as follows. Given two linear graphs G1 and G2, G1 is
said to occur in G2 (or G1 is called a subgraph of G2) if one can obtain G1 from
G2 (regardless of the vertex labels) by a sequence of edge and vertex deletions.
More formally, the deletion of vertex i consists in (1) the deletion of all the edges
incident to vertex i, (2) the deletion of vertex i and of any vertex of degree zero
and (3) the relabeling of all remaining vertices preserving the original order.
Provided with those notations, the RNA structure comparison problem using
linear graphs – noted Mlg – is defined as follows: given two linear graphs G1
and G2, find a maximum size – in terms of edges – common linear subgraph.
Hence, this problem comes down to finding a common substructure that has the
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Table 1. RNA structure comparison: computational complexity of the Lapcs, Edit
and Mlg problems considering input structures resp. of A and B types. For both
the Edit and the Lapcs problems, n and m denote resp. the number of bases of the
sequences of A and B types. For the Mlg problem, n and m denote the number of
vertices of each linear graph, n ≥ m.

A × B
Chain Nested Crossing Unlimited

Chain Chain Nest Chain Nest Cros Chain Nest Cros Unlim

Edit
O(nm) O(nm3) NPC MAX-SNP hard

[10] [15] [6] [17]

Lapcs
O(nm) O(nm3) NPC

[10] [15] [15,10]

Mlg
O(nm) O(n2m) O(n2m2) O(n4 log3 n) NPC O(n4 log3 n) NPC

[14] [18] [18] [16] [8,19] [16] [8,19]

largest number of arcs between two given structures. We note that there exists
some variants of the problem [12,19].

As illustrated in Table 1, seeking for a maximal common substructure is easier
when the maximality criterion relies only on the number of common arcs (Mlg),
rather than on common bases (Lapcs, Edit). More precisely, one may note that
when at least one of the input structures is of Chain or Nested type, Mlg is
always polynomial time solvable.

3 Maximum Arc-Preserving Common Subsequence

In order to fill the gap which lies between simplistic and sophisticated paradigms
like respectively, Lapcs and Edit, we introduce here a new paradigm,that we
name Maximum Arc-Preserving Common Subsequence. The purpose of
Mapcs is to overcome both the lack of expressiveness of Lapcs and the intrinsic
complexity of Edit due to its sophisticated operations. Moreover, as illustrated
in Table 1, according to the results of Mlg, restricting the complexity of the
similarity criteria may be a way of going further ; indeed, we then may be able to
solve, in polynomial time, more instances. The Mapcs is defined formally as fol-
lows: given two arc-annotated sequences (S1, P1) and (S2, P2) and two functions
fb : Σ → N

∗ and fa : Σ2 → N
∗, find a common arc-annotated subsequence (T, Q)

that maximizes the following score function:
∑

c∈T fb(c) +
∑

(c1,c2)∈Q fa(c1, c2).
In other words, the Mapcs problem aims at finding a common subsequence
similarly to the Lapcs problem, except that the score takes into account both
the number of bases and arcs of the common subsequence. We will first focus
on two possible extensions of the Mapcs problem, where either fa or fb always
returns 0 ; for both problems, we state their computational complexity, depend-
ing on the form of the input structures (Chain, Nest, Cros or Unlim). Then,
we fully investigate the computational complexity of the Mapcs problem itself.
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3.1 Extending Mapcs to the Case Where fa or fb Always Returns
Zero

Before going into details concerning the computational complexity of the Mapcs
problem, we would like to point out two closely related problems, that can be
seen as extensions of Mapcs, if we allow function fa or fb to be ignored by
always returning zero. In particular, we will see that those two problems are in
fact closely related to, respectively, the Lapcs and the Mlg problems.

If fa : Σ2 → 0 and fb : Σ → N
∗, then the corresponding problem is equivalent

to the Lapcs problem, whose complexity has been extensively studied, and is
summarized in Table 1. If fa : Σ2 → N

∗ and fb : Σ → 0, then the corresponding
problem, that we will call Mapcs*, is closely related to the Mlg problem, where
the vertices of the linear graphs are now labeled with a letter from the alphabet
Σ = {A, U, G, C} and where edges only exist between two vertices labeled A
and U (resp. C and G). The computational complexity of the Mapcs* problem,
depending of the types of the input sequences, is summarized in the following
propositions (some proofs are omitted due to space constraints).

Proposition 1. The Mapcs*(Chain,Chain) problem can be solved in O(nm)
time, where n and m are the number of bases of each sequence.

Proposition 2. The Mapcs*(Nest,Nest) (resp. Mapcs*(Nest,Chain))
problem can be solved in O(n2m2) (resp. O(nm2)) time, where n is the number of
bases of the Nest sequence and m is the number of bases of the other sequence.

Proof. Note that we can pre-process both sequences so that they do not contain
free bases. Clearly, this pre-process does not change the result (sine fb always
returns 0) neither the arc structure (i.e., Chain or Nested), and can be carried
out in linear time. Let us first focus on the Mapcs*(Nest,Nest) problem. The
proof is directly derived from the work of Lozano and Valiente [18], in which
a dynamic programming algorithm was given in order to obtain a maximum
common embedded subtree of two trees. Briefly stated, since the two input se-
quences of our problem are of Nested type, there is a natural representation of
such sequences as trees: each vertex of the tree represents an arc, and an edge
joins a father f to its son s if the arc represented by s is directly nested in the
arc represented by f . The dynamic programming algorithm from [18] computes
the maximum common subtree of two trees, and thus, if adapted to the Mapcs*
problem in order for the score function to take function fa into account, would
output a common subsequence having the maximum score. The only thing miss-
ing in the algorithm from [18] is that it could match any two vertices of the tree
(i.e., in our case, any two arcs). This means that, for instance, an arc A–U could
be matched to an arc G–C. However, this can be easily fixed in the algorithm
by adding some conditions, in the dynamic programming recursive formula, that
will ensure that only similar arcs can be matched. It is possible to show that,
using this algorithm to solve Mapcs*(Nest,Chain), the size of the dynamic
programming table becomes O(nm2) and thus the time complexity follows. ��
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Proposition 3. Mapcs*(Unlim,Nest) can be solved in O(n4 log3 n), where n
is the maximal number of bases in an input arc-annotated sequence.

Proof. The proof relies on the same argument as in proof of Proposition 2, using
a result from the Mlg problem [16]. The problem is to extract from two linear
graphs of Unlimited type a Nested structure having the maximum number
of arcs. In our context, since one of the two input sequences is of Nested type,
we can ensure that the result will be Nested. Moreover, in both problems, one
wishes to maximize the number of arcs of the common structure. Thus, the
algorithm from [16] could be applied to the Mapcs*(Unlim,Nest) problem,
except that linear graphs are unlabeled graphs, which means that any arc can
be matched to any other arc in Mlg. However, as for Proposition 2 above, this
problem can be easily fixed: indeed, the algorithm from [16] starts by construct-
ing trapezoids that correspond to all possible arc matchings, and then finds the
maximum set of trapezoids that are either pairwise included, or totally disjoint,
in order to end up with a Nested structure of maximum size. In our case, it
suffices to change the first step of the algorithm by constructing the trapezoids
that correspond to “valid” matchings, that is arcs whose bases have the same
labels in the same order. Hence the result. ��

Theorem 1. The Mapcs*(Cros,Cros) problem is NP-complete.

Proof. We consider here the natural decision version of the Mapcs* problem,
in the specific case where fa always returns the same constant. Clearly, the
problem is in NP. In order to prove that it is NP-complete, we propose a
polynomial reduction from the Max-Clique problem, defined as follows: Given
a graph G and an integer k, is there a clique of cardinality greater than or
equal to k in G ? The idea here is to construct, from any graph G = (V, E),
two arc-annotated sequences (S1, P1) and (S2, P2), in which, informally, (S1, P1)
will represent G and (S2, P2) will represent a clique of cardinality k that we
wish to find in G. Then, we will prove that finding a common subsequence of
maximum score between (S1, P1) and (S2, P2) is equivalent to finding a clique of
size k in G. Now, we formally describe the construction of the two arc-annotated
sequences (S1, P1) and (S2, P2). We first describe S1: S1 = S1

1S2
1 ...Sn

1 , with
Si

1 = A(CG)nU ∀i ∈ {1, 2, . . . , n}. Now, P1 is defined as follows: first, within
each Si

1, there is an arc between bases A and U. Then, for each edge (vi, vj)
in G, we connect the j-th base C (resp. G) of Si

1 to the i-th base G (resp.
C) of Sj

1 . Let us now describe the construction of (S2, P2). We start with S2:
S2 = X1 A Y1 U X2 A Y2 U . . . Xk A Yk U Xk+1, where (i) Xi = (AU)n−k, and
(ii) Yi = T1 T2 . . . Tk, with Tj = CG for all 1 ≤ j ≤ k. Thus, S2 can be defined
as S2 = ((AU)n−kA(CG)kU)k(AU)n−k. The arcs of P2 are as follows: each base
A is connected by an arc to the first base U on its right. Moreover, for any
1 ≤ i < j ≤ k, there is an arc between base C (resp. base G) in Tj of Yi and
base G (resp. base C) in Ti of Yj . Clearly, this construction can be achieved in
polynomial time, and yields to sequences (S1, P1) and (S2, P2) that are both of
Crossing type. An illustration of such a construction is given in Figure 1, where
n = 4 and k = 3.
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Fig. 1. Illustration of the construction where n = 4 and k = 3

The proof relies on the following equivalence: there exists a clique of cardi-
nality greater than or equal to k in G iff there exists an arc-preserving common
subsequence (T, Q) of (S1, P1) and (S2, P2) whose score is greater than or equal
to (n + k(k − 1))fa. It is omitted here due to space constraints. ��

Table 2. Complexity of Mapcs* (n and m are the lengths of the input sequences with
m ≤ n)

A × B
Chain Nested Crossing Unlimited

Chain Chain Nest Chain Nest Cros Chain Nest Cros Unlim

Mapcs* O(nm) O(n2m) O(n2m2) O(n4 log3 n) NPC O(n4 log3 n) NPC

Prop. 1 Prop. 2 Prop. 2 Prop. 3 Thm 1 Prop. 3 Thm 1

Those results show that, though the problem is different, the Mapcs* and
Mlg problems are sufficiently close to admit the same computational complexity
in each case (cf. Table 2).

3.2 The Mapcs Problem

We now turn to the Mapcs problem in itself, where neither fa nor fb returns
zero. We first begin by a property relating Mapcs to Lapcs in a very specific
case. This property will help us derive some computational complexity results.

Property 1. Given two arc-annotated sequences (S1, P1) and (S2, P2) s.t. at least
one of them is of Plain type, then Lapcs and Mapcs have the same complexity.

Proof. Since at least one of P1 and P2 is the empty set, there will be no common
arc in any common subsequence (T, Q) of (S1, P1) and (S2, P2). Therefore, the
score of (T, Q) will only depend on fb for the Mapcs problem. Hence, the poly-
nomial results for Lapcs can be adapted to Mapcs by changing the dynamic
programming formulas to take fa into account, while the NP-completeness re-
sults for Lapcs actually are valid for Mapcs, when fb always returns 1. ��

Thanks to Property 1, and since Lapcs(Cros,Plain) is NP-complete, so does
Mapcs(Cros,Plain). This also implies that Mapcs(X,Y) is NP-complete, for
any X ∈ {Cros,Unlim} and Y s.t. Y ⊆ X .
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Proposition 4. The Mapcs(Chain,Chain) (resp. Mapcs(Nest,Chain))
problem is solvable in O(nm) (resp. O(nm3)) time, where n (resp. m) is the
number of bases of the Nest (resp. Chain) type sequence.

Proof. Again, the idea here is to adapt an already existing algorithm, more pre-
cisely the dynamic programming algorithm designed by Lin et al. in [15] that was
used to show that both the Lapcs(Chain,Chain) and the Lapcs(Nest,Chain)
problems are polynomial-time solvable. Indeed, in [15], Lin et al. have designed
a dynamic programming algorithm relying on a score function χ which may be
refined to take into account the fact that the considered bases are incident or
not to an arc ; in our case, it suffices to adapt χ in order to use either fb or fa

in the computation of the score. ��

Theorem 2. The Mapcs(Nest,Nest) problem is NP-complete.

We consider here the natural decision version of Mapcs. We propose a reduction
from the mis-3p problem which is known to be NP-complete [4]. The mis-3p
problem consists in, given a cubic planar bridgeless connected graph G = (V, E)
and an integer k, finding an independent set of size k in G. Recall, that a graph
G = (V, E) is said to be cubic planar bridgeless connected if any vertex of V
has degree three (cubic), G can be drawn in the plane in such a way that no
two edges of E cross (planar), and there are at least two edge-disjoint paths
connecting any pair of vertices of G (bridgeless connected). As in [6], the proof
is a two-step procedure: we first compute a 2-page book embedding of the input
graph, and next transform each page into an RNA arc-annotated sequence.

A 2-page book embedding of a graph G is a linear ordering of the vertices of G
along a line together with an assignment of the edges of G to the two half-planes
delimited by the line – called the pages – such that no two edges assigned to the
same page cross (they may, however, share a vertex). For convenience, we will
refer to the page above (resp. below) the line as the top-page (resp. bottom-page).
A 2-page s-embedding will denote a 2-page book embedding where, in each page,
every vertex has degree at least one.

Theorem 3 ([3]). There exists a polynomial-time algorithm that computes a
2-page s-embedding of any cubic planar bridgeless connected graph.

According to the above theorem, we thus first compute in polynomial-time
a 2-page s-embedding of our input graph G = (V, E), and we write V =
(v1, v2, . . . , vn) for the vertices of G according to the linear ordering induced
by the 2-page s-embedding. The corresponding Nested type arc-annotated se-
quences (S1, P1) and (S2, P2) are defined as follows: S1 = X S1

1 X S2
1 . . . X Sn

1 X ,
S2 = X S1

2 X S2
2 . . . X Sn

2 X where (i) X = C10nG10n and there is an arc be-
tween the ith and the 20n − (i + 1)th base of X , 1 ≤ i ≤ 10n (all bases of X
are thus paired in a nested way and we call all these arcs the separating arcs
of the two arc-annotated sequences), and (ii) for each 1 ≤ i ≤ n, Si

1 (resp. Si
2)

is a segment AAAUUUAUAUA if vertex vi has degree 2 in the top-page (resp.
bottom-page), and Si

1 (resp. Si
2) is a segment UAUAUAAAAUU otherwise ; more-

over, in any segment AAAUUUAUAUA there is an arc between the 1st (resp. 8th)
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and the 5th (resp. 9th) base, and in any segment UAUAUAAAAUU there is an
arc between the 3rd (resp. 7th) and the 4th (resp. 11th) base ; we call all these
arcs the intra-segment arcs of the two arc-annotated sequences.

What is left is to add the edges of the input graph G into our construction.
For each (vi, vj) ∈ E, i < j, of the top-page we create, in P1, an arc a1 linking
a base U of Si

1 and a base A of Sj
1 and an arc a2, nested in a1, linking the base

A (resp. U) directly to the right (resp. left) of the base U (resp. A) of a1. We
proceed in a similar way for the bottom-page by adding, for each edge in that
page, two arcs in P2. Moreover, we impose that when a vertex vi has degree 1 in
the top-page (resp. bottom-page), the two corresponding arcs in P1 (resp. P2)
are incident to the two leftmost free bases A and U of the segment Si

1 (resp. Si
2),

and to the four rightmost free bases A and U otherwise. We call all these arcs the
inter-segment arcs of the arc-annotated sequences. It is easy to check that the
above construction results in two Nested type RNA arc-annotated sequences
(S1, P1) and (S2, P2). An example of such a construction is given in Figure 2.
The size of the sequences is clearly polynomial in n. Indeed, both S1 and S2 have
length 20n2 + 31n. To complete the construction, we suppose that fa (resp. fb)
always returns the same constant. We claim that there exists an independent
set of size k in G iff there exists an alignment of (S1, P1) and (S2, P2) with total
score 20n(n + 1)fb + 10n(n + 1)fa + (fa + 6fb)k + max{6fb, 5fb + fa} (n − k).

Fig. 2. (a) a cubic planar bridgeless connected graph G of order 4, (b) a 2-page s-
embedding of G and, (c) the corresponding Nested type arc-annotated sequences

The proof lies on several properties of an optimal alignment of the sequences
(S1, P1) and (S2, P2) (Lemmas 1 to 4, whose proofs are omitted here). We call
an alignment of (S1, P1) and (S2, P2) canonical if, for each 1 ≤ i ≤ n + 1, the
ith segment X of (S1, P1) is perfectly aligned to the ith segment X of (S2, P2).

Lemma 1. Any optimal alignment of (S1, P1) and (S2, P2) is canonical.

Lemma 2. In any optimal alignment of (S1, P1) and (S2, P2), no inter-segment
arc is conserved.
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We now consider the local alignment of two corresponding segments Si
1 and

Si
2, 1 ≤ i ≤ n. Clearly, Si

1 = AAAUUUAUAUA and Si
2 = UAUAUAAAAUU, or

Si
1 = UAUAUAAAAUU and Si

2 = AAAUUUAUAUA. A simple calculation shows
that the optimal alignment of Si

1 and Si
2 is of length 6 and preserves only one

arc. Such an optimal alignment is obtained by deleting AAAUU in both Si
1 and

Si
2 and has score 6fb + fa. We refer to such an optimal alignment as an optimal

local alignment. Furthermore, any non-optimal alignment of Si
1 and Si

2 results
in a score at most max{6fb, 5fb + fa}.

Lemma 3. The total score of any optimal alignment of (S1, P1) and (S2, P2) is
20n(n + 1)fb + 10n(n + 1)fa + (fa + 6fb)k + max{6fb, 5fb + fa} (n − k), where
k is the number of optimal local alignments.

Lemma 4. There exists an independent set of size k in G iff there exists an
alignment of (S1, P1) and (S2, P2) with total score 20n(n+1)fb +10n(n+1)fa +
(fa + 6fb)k + max{6fb, 5fb + fa} (n − k).

All the results concerning the Mapcs problem are summarized in Table 3.

Table 3. Complexity of Mapcs (n and m are the lengths of the input sequences with
m ≤ n)

A × B
Chain Nested Crossing Unlimited

Chain Chain Nest Chain Nest Cros Chain Nest Cros Unlim

Mapcs
O(nm) O(nm3) NPC

Prop. 4 Prop. 4 Theorem 2 and Property 1

4 Conclusion

In this paper, we have introduced a new model for comparing two RNA struc-
tures using arc-annotated sequences – the Mapcs problem – which can be con-
sidered as an intermediate problem between Lapcs and Edit. Indeed, it is less
intricate than the Edit problem, in the sense that some (but not all) of the
edit operations have a specific cost. Moreover, it is a natural extension of the
Lapcs problem in which a (non zero) score is given to any arc in the common
subsequence, in addition to the score already given to its bases in the Lapcs
problem. This new model makes RNA motif extraction biologically more rele-
vant than the Lapcs problem, since one can intuitively think of a common RNA
subsequence containing many arcs as more “reliable” than one containing as
many bases, but less arcs. We have fully studied the computational complexity
of the Mapcs problem. We have also found interesting to “locate” this problem
compared to other well-known problems for RNA structure comparison, such as
Edit, Lapcs and Mlg ; this allows us to show that Mapcs is not a mere ex-
tension of Lapcs, but somehow lies in the middle of those three problems. This
new paradigm sheds light on a new aspect of the hardness of the RNA structures
comparison problem ; namely, the hardness is not necessarily fully correlated to
the complexity of the allowed edit operations.
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Abstract. This work presents the application of the omni-aiNet algo-
rithm - an immune-inspired algorithm originally developed to solve single
and multiobjective optimization problems - to the construction of phy-
logenetic trees. The main goal of this work is to automatically evolve a
population of phylogenetic unrooted trees, possibly with distinct topolo-
gies, by minimizing at the same time the minimal evolution and the
mean-squared error criteria. The obtained set of phylogenetic trees con-
tains non-dominated individuals that form the Pareto front and that
represent the trade-off of the two conflicting objectives. The proposal of
multiple non-dominated solutions in a single run gives to the user the
possibility of having distinct explanations for the difference observed in
the terminal nodes of the tree, and also indicates the restrictive feed-
back provided by the individual application of well-known algorithms
for phylogenetic reconstruction that takes into account both optimiza-
tion criteria, like Neighbor Joining.

1 Introduction

The phylogenetic tree reconstruction problem is interpreted here as a multiobjec-
tive problem, so that multiple objectives are considered simultaneously and the
concept of a single optimal solution is no more applicable. In fact, to better ex-
plain the difference observed in the terminal nodes of the tree, the literature has
provided a multitude of distinct optimization criteria that are generally applied
in isolation [1]. Two of the most popular ones are the minimum evolution [2] and
the mean-squared error criteria [3]. Both criteria can not be optimized simulta-
neously and the Neighbor Joining algorithm [4] is usually adopted to search for
a phylogeny capable of optimizing them in an iterative way, thus producing a
sub-optimal solution.

In this work, the multiobjetive optimization will be performed by an immune-
inspired algorithm derived from the omni-aiNet algorithm [5], which is a high-
performance population-based approach. Each individual in the population will
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be represented by an arbitrary distance matrix. This representation is adopted
here to provide uniformity to the search space, and the genotype to phenotype
mapping will be performed by the Neighbor Joining algorithm. In this way, in-
stead of searching for proper topology and branch lengths, the search will be
for a distance matrix that, when submitted to the Neighbor Joining algorithm,
produces proper topology and branch lengths. In this genotype to phenotype
mapping, the Neighbor Joining is only an instrument to construct a valid un-
rooted topology with branch lengths, and the distance matrices used as input
will deserve no particular functional interpretation.

As already mentioned, the Neighbor Joining algorithm performs phylogenetic
reconstruction in an iterative way, guiding to a single unrooted tree using a
small amount of computational cost. That is why Neighbor Joining will be used
both as a sub-optimal tool to find an unrooted tree with minimum evolution
and minimum mean-squared error, and as a constructor of unrooted trees from
arbitrary distance matrices. With this genotype representation, the Pareto front
may contain non-dominated solutions with distinct topologies and also with the
same topology but distinct branch lengths.

This work is divided as follows: in Section 2 some concepts of phylogenetic
trees are presented. Basic definitions of multiobjective optimization and a brief
explanation of the omni-aiNet algorithm are given in Section 3. Section 4 presents
the adaptations made to the omni-aiNet to evolve phylogenetic trees. The ex-
periments performed and the results obtained are given in Section 5, and finally
Section 6 draws some concluding remarks.

2 Phylogenetic Trees

Philogeny or the history of the evolution of species is based on a concept of the
Evolution Theory which asserts that groups of organisms that present similar
attributes descend from a common ancestor. The main idea of the Evolution
Theory is that all live beings have a certain degree of relation among each other.

Phylogenetic trees represent these evolutionary relations using relationships
among species. They are constructed based on character data, being a character
any characteristic of an organism that can assume different states. A typical
biological example of a character is the position of a nucleotide in a DNA se-
quence, being the state of the character the nucleotide itself (A,C,G,T). Figure 1
illustrates two phylogenetic trees of DNA sequences.

A phylogenetic tree can be classified into several forms [1]. The two most
common ways of classification are: rooted and unrooted trees, and multifurcating
and bifurcating trees (which is related to the number of edges that originates
from a given node). A rooted tree is a tree that has only one common ancestor
for all species, which is called the root of the tree (Figure 1(b)). Consequently,
an unrooted tree is a tree that does not establish a direction of evolution (Figure
1(a)). In phylogeny, bifurcating trees are generally adopted, indicating that each
species evolves generating two descending species. In this work, only bifurcating
unrooted trees will be considered.
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Fig. 1. Phylogenetic trees of DNA sequences: (a) an unrooted and (b) a rooted tree

It is important to highlight that, even though Figures 1 (a) and (b) present
known sequences associated with internal nodes, they are generally considered
as hypothetical nodes, because only terminal nodes have known sequences.

2.1 Classical Approaches to Tree Reconstruction

The reconstruction of phylogenetic trees can be made using several computa-
tional procedures, that can be classified as follows: (1) algorithmic: a systematic
procedure is designed to determine the tree; (2) search-based: each tree corre-
sponds to a point in a search space to be explored and an optimization criterion
is defined to compare alternative proposals of tree topologies. The algorithmic
procedures try to simultaneously perform the definition of the topology and the
fulfillment of the optimization criteria, in a greedy and step-by-step manner,
while the search-based procedures adopt a distinct paradigm, based on compu-
tational search strategies and composed of two steps: one for the evaluation of
topologies, taking evolutionary assumptions, and other for the determination of
topologies with the highest evaluation among the candidates.

The main disadvantages of the algorithmic procedures are the possibility of
getting stuck in poor local minima and the presentation of a single tree topology
at the end of its execution. The main advantage is the reduced computational
cost, with the number of hypothetical ancestors to be determined being linearly
associated with the number of entities under analysis. These methods incorpo-
rate all distance-based approaches, including cluster analysis (e.g. UPGMA) and
Neighbor Joining (NJ).

The opposite scenario can be depicted in the case of search-based procedures.
The computational cost is the main disadvantage, due to the factorial increase in
the number of candidate topologies with the number of entities under analysis.
On the other hand, very desirable aspects are the possibility of avoiding poor
local minima along the search and the capability of presenting several high-
quality tree topologies as the output, instead of a single one.

In this work, we explore the advantages of an algorithmic procedure for tree
reconstruction (the Neighbor Joining, to be described in this section) togetherwith
an immune-inspired algorithm, originally developed to perform multiobjective
optimization (the omni-aiNet algorithm, to be described in Section 3), to evolve a
population of phylogenetic trees, trying to minimize at the same time the minimum
evolution and the mean-squared error from a given distance matrix.
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The minimum evolution criterion is associated with the sum of the lengths of
all the branches of the tree, while the mean-squared error is associated with the
difference between the original distance matrix and the distance matrix extracted
from the obtained unrooted tree. By trying to minimize these two criteria, we
intend to obtain trees with the smallest total length and with taxa present-
ing distances between each other that are as close as possible to the distances
provided by the original distance matrix.

The Neighbor Joining Algorithm: The Neighbor Joining algorithm is a
method for reconstructing unrooted phylogenetic trees taking a matrix of evo-
lutionary dissimilarities as input data (referred in this text simply as distance
matrix ). The dimension of this square matrix of pairwise distances corresponds
to the number of leaves in the resulting unrooted tree topology, each one denoted
a taxon or OTU (operational taxonomic unit). Initially, the n taxa are neigh-
bors, because the algorithm starts with a star tree. A sequence of agglomerative
steps then follows, taking into account the minimum evolution principle [2] to
determine the pair of taxa to be joined, among all the n ∗ (n − 1)/2 possibilities,
and the Fitch-Margoliash approach [6] to propose the branch lengths of the two
new branches, trying to minimize the mean squared error. At each agglomerative
step, a new node is created (HTU - hypothetical taxonomic unit) to support the
two additional branches, so that the star tree looses the newly-joined OTUs and
gains the new HTU in replacement. This iterative process is repeated until the
remaining star tree has only three taxa.

In computational terms, the agglomerative process has a computational com-
plexity of O(n3), where n is the number of taxa, and may be interpreted as
a greedy strategy that tries to simultaneously satisfy the minimum evolution
principle [2], associated with the sum of branch lengths, and the least squares
criterion [3], associated with the difference between the original distance matrix
and the distance matrix extracted from the obtained unrooted tree. As a conse-
quence, taking locally best decisions toward optimizing both objectives can not
guarantee in general the achievement of the global minimum evolution tree, but
only a sub-optimal tree whose topology may be similar (and sometimes identical)
to the minimum evolution tree [7].

Due to the greedy nature of the search, among all the candidate pairs at each
step of the agglomerative process, only one candidate is taken. As a consequence,
the NJ algorithm is only capable of producing a single unrooted tree at the end
of the execution.

2.2 Distance Metrics

Once the algorithms for phylogenetic reconstruction may produce several differ-
ent trees as the output, a technique to compare those resulting trees is necessary.
So, several techniques for measuring distance between trees were proposed in the
literature ([1], [8], [9]), as the Nearest Neighbor Interchange [10], Quartet Dis-
tance [11] and the most popular Robinson-Foulds metric [12], which was adopted
in this work.
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The Robinson-Foulds metric is also known as symmetric difference or partition
metric, and consists in dividing an unrooted phylogenetic tree into two partitions.
In order to divide the tree, any branch or edge may be chosen, and this edge
divides the original tree into two new trees, each one connected to a final point
of the chosen edge. Each edge on a tree points out a specific partition of the
original tree.

The symmetric difference between two distinct trees consists of the sum of the
absolute differences between the corresponding edge lengths in the trees under
comparison. When a given edge exists in one tree and does not exist in the other,
the length of the absent edge is considered as ”zero”.

As will be seen in Section 4, the Robinson-Foulds metric was used in this work
in the suppression phase of the omni-aiNet algorithm (see Section 3.2), where the
phenotype of the individuals in the population are compared with each other.

3 Multiobjective Optimization

In the last two decades, evolutionary computation has been successfully applied
to multiobjective optimization problems, what leaded to a new research field,
namely EMO (Evolutionary Multiobjective Optimization [13], [14]). Many algo-
rithms specialized to this kind of problems were proposed (e.g. [15], [16], [17]),
each of them with its own characteristics and particular mechanisms.

In this section, we will formalize a multiobjective problem and give defini-
tions of some concepts commonly adopted in multiobjective optimization, that
are relevant to this work. Subsequently, the omni-aiNet algorithm [5] will be
described.

3.1 Basic Concepts

A multiobjective optimization problem (MOP) is a problem which has two or
more objectives that must be optimized simultaneously. This kind of problem
generally presents constraints imposed on the objectives and on the domain of
the variables, and also objectives that can be in conflict with each other. These
conflicts among the objectives often lead to a set of non-dominated solutions for
the problem (which represent good compromises among the objectives), instead
of a single optimal solution.

A given vector u = (u1, . . . , uk) is said to dominate a vector v = (v1, . . . , vk)
(denoted by u � v) if and only if all k components of u are better or equal to
the corresponding components of v and there is at least one component of u
that is strictly better than the corresponding component of v.

When we have a single objective f , the optimal solution corresponds to the
point that has the smallest value of f , considering the whole search space (in
a minimization problem). However, for several objective functions, the notion
of “optimal” solution changes, because the aim now is to find good trade-offs
among the objective functions 1. In this case, the most commonly adopted notion
1 If the objective functions are not conflicting, a single solution exists for the MOP.
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of optimality is the one associated with the Pareto front. A solution x∗ belongs
to the Pareto front if there is no other feasible solution x (i.e. a solution that
does not violate any constraints) capable of reducing the value of an objective
without simultaneously increasing at least one of the others.

Therefore, the Pareto optimal set (the optimal solution) for a multi-objective
optimization problem is given by the set of solutions that is not dominated by
any other feasible solution in the domain of the problem, and the corresponding
Pareto front of this optimal set is the set obtained by the application of the
objective functions to each solution in the Pareto optimal set. An example of
Pareto front can be found in Figure 4.

3.2 The Omni-aiNet Algorithm

The omni-aiNet is an immune-inspired algorithm proposed by Coelho and Von
Zuben [5] to solve single and multi-objective optimization problems, either with
single and multi-global solutions. The search engine of this algorithm is capable
of automatically adapting the exploration of the search space according to the
intrinsic demand of the optimization problem. Due to the immune inspiration,
the omni-aiNet presents a population capable of adjusting its size during the
execution of the algorithm, according to a predefined suppression threshold, and
a grid mechanism to control the spread of solutions in the objective space (space
of the objective functions).

The omni-aiNet algorithm works with a real-coded population of antibodies
that correspond to the candidate solutions for the optimization problem, and
basically follows the steps shown in Figure 2.

Fig. 2. Main steps of the omni-aiNet
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The algorithm starts by randomly generating an initial population of size Ni

(Ni is defined by the user). Each individual generated is within the range of
the variables. After the creation of the initial population, the algorithm enters a
loop where the stop criterion is the number of generations (also defined by the
user). Within this loop, the main steps of the algorithm are executed: Cloning,
Hypermutation (using a polynomial mutation mechanism), Selection and Gene
Duplication (duplication of parts of the elements in the DNA chain of an indi-
vidual). The suppression of individuals and insertion of new randomly generated
ones are made from Ngs to Ngs generations (Ngs is defined by the user). The
value of Ngs should be greater than one to give enough time for the algorithm to
explore the vicinity of each solution before the suppression of similar individuals.

Further details about each mechanism of the omni-aiNet algorithm can be
found in [5] and will be omitted here. In the next section, the modifications
implemented into the original omni-aiNet algorithm, aiming at evolving phylo-
genetic trees, will be described in detail.

4 The Omni-aiNet Applied to Phylogenetics

As mentioned before, in this work we have applied the omni-aiNet algorithm to
evolve a population of phylogenetic trees of possibly different topologies. To do
so, three dedicated modules were incorporated: (i) an adequate encoding of the
individuals by means of a genotype to phenotype mapping; (ii) a mechanism
to generate the initial population; and (iii) a mechanism to compare similar
individuals in the suppression phase of the algorithm (see Figure 2). With these
dedicated modules, no further adaptations to the algorithm should be made to
effectively evolve a set of phylogenetic trees.

In this section, we will outline these dedicated modules and describe the fea-
sibility constraints applied to the individuals in the population.

4.1 Encoding the Trees

As can be seen in Section 2.1, the Neighbor Joining algorithm is an effective
method to obtain a phylogenetic tree from a given distance matrix. In this work,
we explore this characteristic by working directly with distance matrices as in-
dividuals in the population (the genotype of the individuals), and using the
Neighbor Joining to convert these matrices into the corresponding trees (the
phenotype of the individuals).

This approach allows us to maintain the real encoding used by the original
algorithm and, at the same time, indirectly permits the evolution of trees with
distinct topologies without the need of refined data structure devices to manip-
ulate trees.

A brief illustration of the enconding mechanism and the conversion of the en-
coded individual (genotype) to the corresponding phylogenetic tree (phenotype)
is given in Figure 3.
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Fig. 3. Illustration of the encoding mechanism and the conversion from distance matrix
to phylogenetic tree using Neighbor Joining

4.2 Initial Population

In the original algorithm, the initial population of Ni individuals (Ni defined by
the user) is generated randomly within the domain of the problem. We could
adopt the same approach here. However, since we have an initial distance matrix
defined for the taxa of the problem, we have decided to initialize the individuals
by adding small random perturbations to this original matrix. By doing so, the
initial individuals tend to be closer to the original distance matrix than a purely
random initial population would be. Notice again that the distance matrices in
the population have no relevant meaning and should serve only as a proper input
to the Neighbor Joining algorithm. We are looking for distance matrices that,
when used as input to the Neighbor Joining algorithm, produces high quality
unrooted trees at the output.

Therefore, the application of the omni-aiNet to generate a set of distance
matrices that lead to high quality trees when submitted to the NJ algorithm can
be seen as the result of the application of perturbations (proportional to each
individual’s quality, as can be seen in [5]) to the original distance matrix, that
can compensate the NJ’s possibly unsatisfactory results obtained when directly
applied to this original distance matrix.

4.3 Affinity Among Antibodies and Suppression

The measure of affinity among antibodies (individuals in the population) to-
gether with the suppression phase of the omni-aiNet algorithm is one of the key
mechanisms to maintain a good diversity of the individuals in the population
(the second diversity maintenance mechanism in the algorithm is the grid pro-
cedure). The maintenance of diversity in the population of candidate solutions
is important to allow the algorithm to perform a wide exploration of the search
space and, consequently, increase the overall efficiency of the search, and provide
a good spread of the final solutions along the Pareto front.

In the original algorithm, the measure of affinity among antibodies (that is
nothing more than a measure of similarity of a pair of individuals) is given by the
Euclidean distance from one antibody to the other. In this work, the Euclidean
distance of distance matrices is not directly related to the dissimilarity among
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the corresponding phylogenetic trees, what could produce misleading results. To
avoid this problem, we have replaced the Euclidean distance by the Robinson-
Foulds metric (see Section 2.2), that is capable of evaluating how distinct a given
tree is from another one. Once this metric is symmetrical and also returns real
values, it can simply replace the Euclidean distance in omni-aiNet without the
need of deeper modifications into the original algorithm.

4.4 Feasibility of Solutions

One last topic that should be highlighted is the feasibility of the candidate
solutions. In the original omni-aiNet, developed for function optimization, to
define the feasibility of a candidate solution it is verified whether it satisfies
the equality, inequality and domain constraints of the problem. In this work,
the procedure is the same, except that we don’t have any equality constraints
and we must analyze not only the genotype of the individuals (their distance
matrices) but also its phenotype (the resulting phylogenetic trees).

If we apply only the restriction of positivity to the values in the distance ma-
trices (once it does not make sense any negative distances) we do not guarantee
that the branch lengths of the trees obtained by the Neighbor Joining will also
be non-negative (see Equation 6 in [4]). Negative branches can appear due to
noisy values in the distance matrix which can possibly lead to non-additive dis-
tances in the matrices [18]. So, we should also analyze the branch lengths of an
individual to determine its feasibility.

In summary, we adopted two constraints to the problem: the values in the
distance matrices should be positive (and we also adopted an upper bound, as
required by the algorithm) and the values of the edge lengths of the phylogenetic
tree associated with each individual should also be non-negative.

5 Experimental Results

Although several practical aspects of the multiobjective algorithm are of concern,
in this paper we will emphasize the strong contrast between the results produced
by the isolated application of Neighbor Joining and the ones produced by the
omni-aiNet algorithm. Notice that both approaches take into account minimum
evolution and mean squared error as optimization criteria. A single instance of
a distance matrix associated with eight taxa is considered, given in Equation 1.
Even in this small-size phylogenetic problem the performance of the Neighbor
Joining will be shown to be poor, because the sub-optimal solution is located
far from the Pareto front produced by the multiobjective approach.

In Subsection 5.1 the parameters of the omni-aiNet will be presented and the
values attributed to them in this experiment will be given, and in Subsection 5.2
the obtained results will be presented and discussed.
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5.1 Parameters

The omni-aiNet has several parameters that should be adjusted before the exe-
cution of the algorithm. These parameters will be briefly described here, together
with the respective values adopted in this work. All parameters were chosen in a
way to lead the algorithm to present a good performance. However, no exhaus-
tive exploration of the parameter space was made. Further information about
these parameters can be obtained in [5].

– Size of the initial population: controls the number of individuals that will
be generated initially. In this work we set this parameter to 20 individuals.

– Maximum number of iterations: this is the stop criterion of the algo-
rithm. We fixed this parameter in 50 iterations.

– Number of random individuals inserted: indicates the number of ran-
domly generated individuals that will be inserted in the population after the
suppression phase. This parameter was set to 10 individuals.

– Number of clones for each individual: corresponds to the number of
clones that are generated for each individual in the population, during the
clonal expansion of the algorithm. We defined this parameter as 10 clones
per individual.

– Suppression Threshold: determines whether an individual must be sup-
pressed (eliminated) from the population or not. In the suppression phase of
the algorithm, all individuals are compared to the remaining ones and, if their
affinity is below a given threshold, the one with the smallest fitness is sup-
pressed. In this work the suppression threshold was set to 0.05, what means
that if two individuals have a distance value between each other smaller than
5% of the distance between the farthest individuals in the population, the
worst one will be suppressed.

– Maximum population size: this parameter is a limit to the number of
individuals in the population and was set to 100 individuals

– δ: controls the mechanism of ε-dominance (a relaxation of the Pareto dom-
inance concept), and stimulates more exploration of the search space, im-
proving diversity. This parameter was set to 0.005.

5.2 Results

The final set of non-dominated solutions, obtained by the omni-aiNet is pre-
sented in Figure 4 (circles), together with the phylogenetic tree obtained by the
Neighbor Joining method applied to the original distance matrix of the problem
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Fig. 4. Final non-dominated solutions found by the omni-aiNet algorithm (circles) and
the tree obtained by the Neighbor Joining for the original distance matrix (diamond).
This figure also presents three of the final trees obtained by the omni-aiNet algorithm.
These results were obtained after 7 hours of simulation on a Pentium IV 2.6GHz, with
1.5GB of RAM, using the Matlab environment.

(diamond). As can be seen, the solution obtained by the Neighbor Joining is
worse than the ones obtained by the omni-aiNet (as it is positioned farther from
the Pareto front), which demonstrates the capability of the proposed methodol-
ogy to generate phylogenetic trees with better mean-squared error and minimum
evolution. These results also clearly illustrate the drawback of the greedy and
iterative optimization of the two objectives made by the Neighbor Joining, once
the solution found by this algorithm is sub-optimal.

Figure 4 also presents the graphical representation of three of the phylogenetic
trees generated by the omni-aiNet and, as can be seen, the proposed methodology
is indeed capable of evolving trees with distinct topologies, and also trees with
the same topology but distinct branch lengths. It is interesting to note that the
omni-aiNet was capable of obtaining a tree with the same topology obtained by
the Neighbor Joining, but with different branch lengths.
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6 Conclusions

This paper presents two main contributions: (i) a multiobjetive approach to
phylogenetic reconstruction; and (ii) adaptations to the omni-aiNet so that this
very powerful optimization algorithm could be applied to phylogenetic recon-
struction. Even restricted to a single didactic example, the obtained results are
very promising and are akin to the already observed tendency of proposing mul-
tiple alternative candidate solutions in phylogenetic analysis.

As further perspectives, we intend to consider datasets with distinct aspects
and to introduce additional objectives to be optimized.

References

1. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Suderland, USA (2004)

2. Kidd, K.K., Sgaramella-Zonta, L.A.: Phylogenetic analysis: Concepts and methods.
The American Journal of Human Genetics 23, 235–252 (1971)

3. Bulmer, M.: Use of the method of generalized least squares in reconstructing phy-
logenies from sequence data. Molecular Biology and Evolution 8, 868–883 (1991)

4. Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

5. Coelho, G.P., Von Zuben, F.J.: omni-aiNet: An immune-inspired approach for omni
optimization. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163,
pp. 294–308. Springer, Heidelberg (2006)

6. Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155, 279–
284 (1967)

7. Saitou, N., Imanishi, M.: Relative efficiencies of the fitch-margoliash, maximum-
parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining meth-
ods of phylogenetic reconstructions in obtaining the correct tree. Molecular Biology
and Evolution 6, 514–525 (1989)

8. Brodal, G.S., Fagerberger, R., Pedersen, C.N.S.: Computing the quartet distance
between evolutionary trees in time O(n.log(n)). Algorithmica 38, 377–395 (2004)

9. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between
phylogenetic trees. In: Proceedings of the 8th Annual ACM - SIAM Symposium
on Discrete Algorithms, pp. 427–436. ACM Press, New York (1997)

10. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On computing the
nearest neighbor interchange distance. Mathematics Subject Classification (1991)

11. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz,
M.F., Lapoint, F.J., Morris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsensus.
Dimacs Series in Discrete Mathematics and Theoretical Computer Science, vol. 61,
American Mathematical Society (2003)

12. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical
Biosciences 53, 131–147 (1981)

13. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York
(2002)

14. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John-
Wiley & Sons, Chichester, UK (2001)



Evolving Phylogenetic Trees: A Multiobjective Approach 125

15. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based se-
lection in evolutionary multiobjective optimization. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001) (2001)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm. In: EUROGEN 2001. Evolutionary Methods for Design, Opti-
mization and Control with Applications to Industrial Problems, pp. 95–100 (2002)

18. Atteson, K.: The performance of neighbor-joining methods of phylogenetic recon-
struction. Algorithmica 25, 251–278 (1999)



Comparing Several Approaches for Hierarchical

Classification of Proteins with Decision Trees

Eduardo P. Costa1, Ana C. Lorena2, André C. P. L. F. Carvalho1,
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Abstract. Proteins are the main building blocks of the cell, and per-
form almost all the functions related to cell activity. Despite the recent
advances in Molecular Biology, the function of a large amount of pro-
teins is still unknown. The use of algorithms able to induce classification
models is a promising approach for the functional prediction of proteins,
whose classes are usually organized hierarchically. Among the machine
learning techniques that have been used in hierarchical classification
problems, one may highlight the Decision Trees. This paper describes
the main characteristics of hierarchical classification models for Bioin-
formatics problems and applies three hierarchical methods based on the
use of Decision Trees to protein functional classification datasets.

1 Introduction

In functional genomics, an important problem is the prediction of the function of
proteins. Proteins are the main building blocks of the cell, and perform almost all
the functions related to cell activity. The primary sequence of a protein consists
of a linear string of amino acids, which is then folded into a specific 3-D shape
necessary for the protein to function properly. Proteins often share common
amino acid sub-sequences due to evolutionary processes.

An approach frequently used in the prediction of a protein function is to
search for similar sequences in protein databases. The objective is to find a
similar sequence whose function is known. If a similar protein sequence is found,
its function is assigned to the new protein. Although this method is very useful
in a large number of situations, it has also some limitations [1]. Two proteins
might have very similar sequences and perform different functions, or have very
different sequences and perform the same or a similar function. Additionally, the
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proteins being compared may be similar in regions of the sequence that are not
determinants of their function.

A second approach may be used alternatively or in complement to the si-
milarity-based approach. The central idea of this approach consists of inducing
a classification model for the prediction of protein function. Each protein is
represented by an attribute set and a learning algorithm captures the most
important relationships between the attributes and the classes present in the
dataset.

As protein functional data is, frequently, organized hierarchically (for exam-
ple, in the Gene Ontology [2] and in the Enzyme Commission hierarchy [3]),
the use of hierarchical techniques for the induction of classification models in
Bioinformatics is a promising research area.

This paper treats the main aspects concerned with hierarchical classification in
Bioinformatics. Two datasets were used for a comparative study among different
schemes for hierarchical classification. Decision Trees (DTs) [4] were used in the
classifiers induction.

The main contribution of this paper is to compare several different approaches
for the hierarchical classification of proteins. To the best of our knowledge, an
empirical comparison of the approaches evaluated in this paper has not been
reported yet in the literature.

The paper is organized as follows: Section 2 introduces important concepts
of hierarchical classification; Section 3 presents the main approaches used in
the induction of classifiers for hierarchical classification problems, as well as
some literature related to the protein function prediction problem; Section 4
discusses the materials and methods employed in the experiments performed in
this work; Section 5 presents the experimental results; and Section 6 has the
main conclusions of this work.

2 Hierarchical Classification

Classification is one of the most important problems in Machine Learning (ML)
and Data Mining (DM) [5]. A classification problem can be defined as the the
process of finding a function, through a training or adjustment phase, which
maps each input instance Ti into one of the N classes of the problem, with
i = 1, 2, ..., n, where n is the number of training instances.

The vast majority of classification problems reported in the literature involves
flat classification, where each instance is assigned to a class out of a finite (and
usually small) set of flat classes. Nevertheless, there are more complex classifica-
tion problems, where the classes to be predicted are hierarchically related [1,6].
In these classification problems, one or more classes can be divided into sub-
classes or grouped into superclasses. These problems are known as hierarchical
classification problems in the ML literature.

There are two main ways in which the classes may be hierarchically disposed:
as a tree or as a Directed Acyclic Graph (DAG). The main difference between
the tree structure (Figure 1.a) and the DAG structure (Figure 1.b) is that, in
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the tree structure, each node has just one parent node, while in the DAG each
node may have more than one parent. For both flat and hierarchical classification
schemes, the nodes represent the problem classes and the root node corresponds
to “any class”, denoting a total absence of knowledge about the class of an object.
Hierarchical classification problems often have as objective the classification of a

Fig. 1. Examples of hierarchies of classes: (a) structured as a tree and (b) structured
as a DAG

new input data into one of the leaf nodes. The deeper the class in the hierarchy,
the more specific and useful is its associated knowledge. It may be the case,
however, that the classifier does not have the desired reliability to classify a data
into deeper classes. In this case, it would be safer to perform a classification into
shallower levels of the hierarchy.

In tree structures, the deeper the level, in general the more difficult is the class
prediction phase. This may be due to the fact that the classes in deeper levels
represent more specific information and are produced by models that have been
induced from a smaller number of instances. Therefore, they are more difficult
to predict. For DAG structures, the analysis is more complex. As a child node
may have more than one parent, some classification models in deeper levels may
have been induced from more instances than their ancestral. Besides, in practice,
even for DAGs, the prediction accuracy rate decreases with the increase in the
class level (depth) [1].

Herewith, the closer the predicted class is to the root of the class tree, the
lower the classification error tends to be. On the other hand, such classification
becomes less specific and, as a consequence, less useful. Therefore, a hierarchical
classifier must deal with the trade-off class specificity versus classification error
rate.

In some problems, all instances must be associated to classes in leaf nodes.
These problems are named “mandatory leaf-node prediction problems”. When
this obligation does not hold, the classification problem is a “optional leaf-node
prediction problem”.
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3 Classification Approaches for Hierarchical Problems

Following the nomenclature in [1], four types of approaches to deal with these
problems may be cited: transformation of the hierarchical problem into a flat
classification problem, hierarchical prediction with flat classification algorithms,
Top-Down classification and Big-Bang classification.

Several solutions have been proposed for the induction of classification mod-
els for hierarchical problems. Many hierarchical classification works have been
published in the last years, mainly related to text mining problems [7,6]. Never-
theless, due to the inherent hierarchical characteristic of several biological prob-
lems, hierarchical classification has found in the Bioinformatics area a vast and
promising exploration field.

Next, a brief description of the four types of hierarchical classification schemes
is presented, along with works related to the protein function prediction problem.

Transformation of the Hierarchical Problem into a Flat Classification
Problem

Although in a hierarchical problem the classes are hierarchically organized, this
approach reduces the original hierarchical problem to a flat classification prob-
lem. This idea is supported by the fact that a flat classification problem may be
viewed as a particular case of hierarchical classification, in which there are no
subclasses and superclasses. Traditional approaches for flat classification may be
applied in this context, without the need to perform alterations or adjustments.

Jensen et al. [8] describe a method, named ProtFun, which uses an ensem-
ble of simple Neural Networks, with a single completely connected intermediate
layer, to predict protein categories. The method predicts functional categories
as originally defined by Riley [9] for Escherichia coli. The classification model
described in Weinert and Lopes [10] is based on Multilayer Perceptron Neural
Networks. The model was applied to the classification of functional and struc-
tural characteristics of enzymes from the Protein Data Bank [11].

Hierarchical Prediction with Flat Classification Algorithms

This approach divides a hierarchical problem into a set of flat classification prob-
lems. The main difference to the previous approach is the possibility to consider
several levels of the hierarchy. In this approach, each class level is treated as an
independent classification problem. For each level, flat classification algorithms
may then be used.

Clare and King [12] describe a classification method that uses the C4.5 algo-
rithm [13] and was applied to S.cerevisiae phenotype data. Jensen et al. describe
in [14] an extension of the method proposed in [8], used in the prediction of GO
(Gene Ontology) classes. Laegreid et al. [15] predicts GO classes using a com-
bination of a rule induction algorithm based on the Rough-Set theory [16] and
Genetic Algorithms [17]. The method described produces rules that model the
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relation between the gene expression levels over time in order to predict the bio-
logical paper of unknown genes. Tu et al. [18] propose a classification model that
uses Neural Networks to infer annotations for more specific classes from known
annotations for their superclasses. As application, data from serum response in
serum-starved human fibroblasts were used. Barutcuoglu et al. [19] described a
method where Support Vector Machines (SVMs) [20] classifiers are trained in-
dependently for each class. A Bayesian hierarchical combination scheme is later
used to allow error correction collaboration among all nodes.

Top-Down Hierarchical Classification

In the Top-Down approach, one or more classifiers are trained for each level of the
hierarchy. This produces a tree of classifiers. The root classifier is trained with all
training instances. Then, at the next class level, a classifier is training with just
the subset of instances belonging to the classes predicted by the classifier. E.g,
in the class tree of Fig. 1(a), a classifier associated with the class node “1” would
be trained only with instances belonging to class 1.1 or 1.2, but its training set
would not include instances of class 2.1 or 2.2. The process of training classifiers
proceeds in a top-down fashion until classifiers predicting the leaf class nodes
are produced. Hence, the top-down approach follows the well-known “divide-
and-conquer” principle.

In the test phase, beginning at the root node, an instance is classified in a
Top-Down manner. When assigned to one class, the instance is then submitted
to a new classifier in order to predict to which of this class’ subclasses it belongs.
This procedure is repeated until a leaf-node class is reached or until no addi-
tional prediction can be made from an internal node, such that the reliability
is not affected. As this approach performs the classification through a modular
process, the classifier induction is simpler when compared to the Big-Bang ap-
proach, described next. In particular, although it produces a tree of classifiers,
each classifier is built by running a flat classification algorithm. Nevertheless, its
disadvantage is that errors made in higher levels of the hierarchy are propagated
to the more specific levels.

HoldenandFreitas[21]proposedahybridalgorithmthatcombinescharacteristics
ofthePSO(ParticleSwarmOptimization)[22]andACO(AntColonyOptimization)
[23] techniques for the inductionofrule-basedclassifiers inaTop-Downmanner.The
hybridalgorithmwas employed for the classificationof enzymes. In [24],Holdenand
Freitas used the same hybrid algorithm proposed in [21], with some extensions, for
the classification of G-Protein-Coupled Receptors [25].

Big-Bang Hierarchical Classification

One can consider that truly hierarchical classification algorithms are instances
of the Big-Bang and the Top-Down approaches [1]. In the Big-Bang approach,
a classification model is created in a single run of the algorithm, considering
the hierarchy of classes as a whole, presenting then a higher algorithmic com-
plexity. After the classification model training, the prediction of the class of a
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new instance is carried out in just one step. For this reason, in contrast to the
other approaches, Big-Bang cannot use pure flat classification techniques. If a
flat classification technique is used in the Big-Bang approach, it must be adapted
to consider the whole hierarchy.

Clare and King [26] modified the C4.5 learning algorithm to predict functional
classes from S.cerevisiae ORFs (Open Reading Frames). Blockeel et al. [27] used
a Decision Tree induction algorithm based on the notion of predictive clustering
trees [28]. The algorithm generates as output one tree for the whole hierarchy of
classes. Phenotype S.cerevisiae data were used in the experiments.

4 Materials and Methods

4.1 Datasets

The datasets used in this paper employ signatures (describing sequence similar-
ity) generated directly from protein sequences to attempt to predict a given pro-
tein’s function. The two datasets used in this paper involve G-Protein-Coupled
Receptor (GPCR) and Enzyme protein families.

G-protein-coupled receptors are proteins involved in signalling. They span
cell walls so that they influence the chemistry inside the cell by sensing the
chemistry outside the cell. More specifically, when a ligand (a substance that
binds to a protein) is received by a GPCR, it causes the attached G-proteins
to activate and detach. This is a mechanical biological switch that causes the
released G-Protein to affect other reactions within the cell. This kind of protein
is particularly important for medical applications because it is believed that
40% − 50% of current medical drugs target GPCR activity [29].

Enzymes are another subset of proteins; they are catalysts which are used
to speed up and make possible many of the chemical reactions that take place
within the cell, without being altered themselves during the reaction. They are
usually very specific, only catalysing one type of reaction within the cell. Often
they can be turned on and off by a ligand (a small molecule that interacts with
the enzyme). This is used to control both the speed of reaction and the course
of overall reaction pathways that take place within the cell.

The protein functional classes are given unique hierarchical indexes by [25] in
the case of GPCRs and by Enzyme Commission Codes [3] in the case of enzymes.
In the case of GPCRs, proteins (data instances) have up to five class levels, but
only four levels are used in the datasets created in this work, as the data in the
5th level is too sparse for training - i.e., in general there are too few instances of
each class at the 5th level. All four levels of the Enzyme Commission Codes are
used in the created Enzymes datasets.

The datasets used in our experiments were constructed from data extracted
from UniProt [30] and GPCRDB [25]. UniProt is a well known biological data-
base, containing sequence data and a rich annotation about a large number of
different kinds of proteins. It also has cross-references for other major biological
databases. UniProt was extensively used in this work as a source of data for
creating the datasets used in the experiments. Only the UniProtKB/Swiss-Prot
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was used as a data source, as it contains a higher quality, manually annotated
set of proteins. Unlike Uniprot, GPCRDB is a biological database specialised on
GPCR proteins.

The predictor attributes in the two datasets are Interpro entries [31,32], along
with the molecular weight and sequence length of each protein. Interpro inte-
grates several protein signature databases (Gene3D, PANTHER, PIRSF, Pfam,
PRINTS, PROSITE, SMART, SUPERFAMILY and TIGRFAM) giving a very
powerful “representation language” to describe the main patterns or “motifs”
(e.g., specific sub-sequences of amino acids) present in a given protein or group
of proteins. The component protein signature databases from which Interpro
entries are derived use three main methods of protein identification: PROSITE
uses regular expressions, PRINTS uses groups of non-overlapping motifs and the
rest rely on Hidden Markov Model methods.

Any duplicate instances (proteins) in a dataset are removed in a preprocess-
ing step, i.e., before the hierarchical classification algorithm is run, to avoid
redundancy. For both GPCR and Enzyme datasets, if there are fewer than ten
instances in any given class in the class tree that class is merged with its parent
class. If the parent class is the root node, the entire small class is removed from
the dataset. This process helps to ensure there is enough instances per class to
allow the classifier to perform a reasonably reliable prediction of each class. Any
binary attribute that has a value which occurs in only one instance is removed
from the corresponding dataset, since these binary attributes in general do not
have a good predictive power. An initial random sample of 15000 enzymes from
the UniProt database was used to generate the enzyme datasets. Less than the
original 15000 instances occur in the final datasets because of the duplicate and
small class removal process.

After preprocessing the datasets used in the experiments, the GPCR dataset
ended up with 450 predictor attributes, 7461 instances (proteins) and 12/54/82/50
classes per level (number of classes at level 1/2/3/4, respectively). The Enzyme
dataset presented 1216 predictor attributes, 14036 instances and 6/41/96/187
classes per level.Due to ahigh computational cost, theEnzymedatasetwas reduced
to 6925 instances and 2/21/48/87 classes per level.

Both datasets were divided according to the 5-fold cross-validation method.
Accordingly, each dataset is divided into five parts of approximately equal size.
At each round, one fold is left for test and the remaining folds are used in
the classifiers training. This makes a total of five train and test sets. The final
accuracy rate of a classification model is then given by the mean of the predictive
accuracy on the test set obtained for each fold.

4.2 Decision Trees

A Decision Tree (DT) is a data structure containing two types of nodes, namely:
a leaf node that corresponds to a class or a decision node that contains a test
over some attribute. For each test result, there is an edge for a subtree. In the
classification of a new instance in the DT, the tree is traversed according to the
tests’ results in a top-down fashion until a leaf node is reached. The instance
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is labeled with the class associated to this node. Examples of DT induction
algorithms are the ID3 algorithm [4] and its successor C4.5 [13]. This work
employed the C4.5 algorithm in the DT induction.

Besides being a practical method for concept learning from data [5], DT models
have a high comprehensibility, that is, the knowledge acquiredby the tree during its
training is easy to understand and interpret. These were the motivations for the
choice of this particular technique for classifier induction in this work.

4.3 Hierarchical Classification Models

The four hierarchical methods described in Section 3 are compared in this work
for the protein classification problems investigated. The first considers only the
leaf nodes of the problem hierarchy, inducing a flat classifier that distinguishes all
classes associated to this set. The idea is that the classification of a new instance
in a class associated with a leaf node also implies in its classification in classes
at higher (shallower) levels of the tree. E.g, if an instance is classified as 2.1.3.4,
then the instance is considered assigned to class 2 at the first level, class 2.1 at
the second level, and so on, in order to compute the predictive accuracy per level
reported later. The second approach decomposes the hierarchical problem into
a set of flat classification problems, each one distinguishing all classes present
in a level of the hierarchy. The third method uses the Top-Down approach and
the last one, the Big-Bang approach. All of them use DT induction algorithms
to produce the classification models. These approaches were chosen in order to
compare different schemes for hierarchical classification.

The flat and Top-Down approaches were implemented using the package
TREE of the R tool [33]. The Big-Bang approach used was the one developed
by Clare and King [26]. This method uses a modified version of the C4.5 algo-
rithm, called HC4.5. The original code of HC4.5 can automatically assign a new
instance to a class in any level of the tree, depending on the characteristics of the
data at each level. Since the goal of this paper is to do an experiment comparing
the Big-Bang and other approaches in a way which is as fair and controlled as
possible, we modified HC4.5, including the restriction that it always assigns a
new instance to a class in a leaf node of the class tree. This automatically assigns
to the instance classes at higher levels of the class tree too.

5 Experiments

Experiments were performed in order to evaluate the hierarchical classification
methods described in Section 4.3 using the datasets from Section 4.1.

Results

The mean accuracy results obtained in the GPCR dataset 5-fold cross-validation
partitions are shown in Table 1. This table shows, for each level of the GPCR
hierarchy, the mean accuracy rates of the hierarchical classifiers induced. The
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standard deviation rates of the accuracies obtained in the cross-validation data
partitions are illustrated in parentheses. The accuracy rate corresponds to the
percentage of correctly classified patterns in a dataset.

Table 1. Accuracy results in the GPCR dataset

Flat Classif. based on leaves Flat Classif. all levels Top-Down Big-Bang

Level 1 61.33 (0.62) 87.80 (0.37) 87.80 (0.37) 91.13 (0.97)

Level 2 57.11 (0.54) 68.64 (0.43) 74.12 (0.65) 76.05 (1.69)

Level 3 21.97 (0.29) 29.22 (0.54) 46.17 (2.12) 43.38 (1.01)

Level 4 31.36 (1.28) 58.17 (2.73) 73.60 (4.46) 68.02 (4.96)

Like Table 1, Table 2 shows the mean and standard deviation accuracy results
observed for the Enzyme dataset partitions.

Table 2. Accuracy results in the Enzyme dataset

Flat Classif. based on leaves Flat Classif. all levels Top-Down Big-Bang

Level 1 82.73 (1.22) 89.78 (0.85) 89.78 (0.85) 88.97 (0.36)

Level 2 61.82 (1.03) 60.33 (1.98) 73.75 (1.34) 84.56 (0.84)

Level 3 58.24 (1.08) 53.79 (2.68) 61.38 (1.24) 84.13 (0.82)

Level 4 59.17 (1.48) 58.93 (0.66) 59.93 (0.13) 96.36 (0.43)

Discussion

The high performance obtained by all approaches in the first level of the EC
dataset, shown in Table 2, occurred because the first level of this dataset has
only 2 classes, different from the GPCR dataset, which presents 12 classes in the
first level.

According to the results showed in tables 1 and 2, the Top Down and Big
Bang approaches performed better than the flat approaches for all levels in both
datasets. This was expected, once the Top Down and the Big Bang approaches
consider the hierarchy during their training and test. This makes the prediction
in deeper levels easier. For the flat approaches, the accuracy tends to decrease
faster than the hierarchical approaches with the increase of the levels depth.

For the GPCR dataset, the flat approach based on all levels performs signifi-
cantly better than the flat approach based on the leaf nodes. For the EC dataset,
none of the flat approaches is clearly superior to the other.

Regarding the hierarchical approaches, for the GPCR dataset, the Top Down
algorithm has a lower accuracy than the Big Bang algorithm for the first two
levels and a higher accuracy for the last two levels. For the EC dataset, the Big
Bang is clearly better than the Top Down in the last three levels. This difference
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may be due to the different hierarchical structure and the class (and instances
per class) distribution in the hierarchy of these datasets.

Regarding the class distribution, the GCPR dataset has a reduced number of
classes, and instances, in the fourth level, when compared with the EC dataset.
This occurs because all classes in the fourth level of the GCPR dataset are part
of the subtree rooted in the class 1 of the first level. The other classes in the first
level have descendents only in the levels 2 and 3. The fourth level has 50 of the
total 198 classes. The EC dataset, in opposite, has 87 of the total 158 classes in
the fourth level.

The unbalanced nature of the distribution of classes in GPCR dataset seems
to favour the correct prediction in the last levels by the Top Down algorithm. A
possible reason is the error propagation mechanism employed by this algorithm
(see Section 3). Since several leaf nodes are in the intermediate levels of the
hierarchy, the errors are not propagated to the deepest levels. Besides, as most
of the last level classes are descendents of the class 1, which has the highest
correct prediction rate, the propagation of errors to the descendents of this class
are less severe.

The GPCR dataset has 1544 of instances in the fourth level, from a total of
7500, making 20.59% of the instances. The EC dataset, on the other hand, has
4887 of instances in the fourth level, from a total of 6995, making 69.86% of
the instances. A similar situation occurs in the third level. We believe that the
reduced number of classes and instances in the last levels harms the performance
of the Big Bang algorithm. This hapens because, unlike the Top Down algorithm,
which uses a divide-and-conquer mechanism for the classification in the leaf
nodes, the Big Bang predictions are made directly in the leaf nodes. For the
previous reason, the high number of instances in the last level of the EC dataset
may have favoured the Big Bang algorithm, see Table 2.

6 Conclusions

In this paper, we presented a comparative study of hierarchical approaches based
on decision trees. Four approaches for hierarchical classification were investi-
gated. Two approaches based on flat classification, the Big Bang approach and
the Top Down approach.

In order to evaluate the performance of these approaches, experiments were
performed using two bioinformatics datasets, which are related with G-Protein-
Coupled Receptor (GPCR) and Enzyme Protein (EC) families. According to the
experimental results, the Top Down and the Big Bang approaches performed
better than the two flat approaches for all levels in both datasets. In the EC
dataset, the Big Bang approach outperformed the Top Down approach in the
last 3 levels. In the GPCR dataset, the Top Down approach was clearly superior
in the last two levels.

For future work, the authors plan to investigate the performance of the hierar-
chical approaches when the deepest classification level assigned to each test in-
stance is automatically defined by the system, without the restriction of always
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assigning one of the leaf classes to every test instance. Other hierarchical classifi-
cation algorithms will also be investigated. Finally, the authors plan to combine
hierarchical classification with multi-label classification.
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Abstract. An important task in the area of gene discovery is the correct 
prediction of the translation initiation site (TIS). The TIS can correspond to the 
first AUG, but this is not always the case. This task can be modeled as a 
classification problem between positive (TIS) and negative patterns. Here we 
have used Support Vector Machine working with data processed by the class 
balancing method called Smote (Synthetic Minority Over-sampling Technique). 
Smote was used because the average imbalance has a positive/negative pattern 
ratio of around 1:28 for the databases used in this work. As a result we have 
attained accuracy, precision, sensitivity and specificity values of 99% on 
average. 

Keywords: Translation Initiation Site, Support Vector Machine, Smote, Imba- 
lanced Data. 

1    Introduction 

Only a portion of the mature messenger RNA (mRNA) is translated into a polypeptide 
chain. This portion is known as the CDS, or CoDing Sequence, which is flanked by 
5’UTR and 3’UTR UnTranslated Regions [1]. Thus, every transcript containing a CDS 
bears a pattern known as the Translation Initiation Site (TIS). Pedersen and Nielsen [2] 
call attention to the fact that the TIS does not always cohabit with the first start codon 
AUG in the mature mRNA. Moreover, it is not even guaranteed that the first ATG in a 
cDNA sequence will be known, especially if they are searched for in ESTs (Expressed 
Sequence Tags, single-pass partial cDNA sequences). 

This situation can be modeled as a classification problem between positive (TIS) and 
negative (pseudoTIS) patterns that can be addressed by using the Support Vector 
Machine (SVM) classifier. However, since only one occurrence of the TIS is expected 
against several pseudoTIS in a typical mRNA sequence (the average imbalance is a ratio 
of around 1:28 between positive:negative patterns for the databases used in this work), 
any analysis will require a method for class balancing. One such method is the Synthetic 
Minority Over-sampling Technique (Smote)[3]. 

In a seminal work, Stormo and colleagues [4] studied the TIS in E. coli using 
perceptron [5] and windows of 51, 71 or 104 bases and binary codification (A=1000, 



 High Efficiency on Prediction of Translation Initiation Site (TIS) 139 

C=0100, G=0010 e T=0001), and characterized the Shine Dalgarno pattern in 124 
genes. 

The first initiative devoted to eukaryotic genes was conducted in 1984 by Kozak 
[6] who determined a consensus for a large collection of data. The Kozak consensus is 
GCC[AG]CCatgG, where “G” is frequent in +4 position and a purine, preferably an 
“A”, is present in position -3. Frequently, eukaryotic ribosome scans the mRNA until 
it reaches the first AUG from the 5’ region [6][7][8] and starts translation.  However, 
this is not a rule, and a subsequent AUG codon merged into a more effective pattern is 
used. Translation can also start in a different codon from AUG, although this does not 
often happen in eukaryotic genes [8][9]. 

Pedersen e Nielsen [2] used an Artificial Neural Network (NN) trained using a 
database composed of Genbank [10] sequences from vertebrates and reached an 
efficiency of 85%. Sequences were filtered to remove introns and redundancy was 
reduced by eliminating excess representatives of gene families and homologous 
genes. In addition to this, only sequences bearing at least 10 upstream or 150 
downstream bases from the annotated start codon were selected. This database has 
subsequently been used by others, the result being a database of 13503 sequences 
containing 3312 TIS (24.5%) and 10190 pseudoTIS (75.5%). However, gene 
annotation has progressed and a database of reference sequences (RefSeq) is now 
available [11]. 

Using SVM, Zien and colleagues [12] improved the analysis of Pedersen e 
Nielsen’s database using the same window size and binary codification. The 
improvement was attributed to modifications in the kernel, reaching an accuracy level 
of 88.1%. Later, with another kernel modification (Salzberg Kernel), an accuracy 
level of 88.6% was attained for the same database. 

Hatzigeorgiou [9] reported the development of the software DIANA-TIS which 
uses two Neural Networks and complete human sequences of cDNA to reach an 
efficiency level of 94%. In this implementation, ribosome scanning is important, since 
a linear search starts in 5’UTR and stops when a positive score is found. Therefore, it 
was assumed that complete sequences would be used as input. 

Zeng and colleagues [13], using 100 bases flanking the TIS and a concept of the 
analysis of characteristics, have reached 90% accuracy using Pedersen e Nielsen’s 
dataset. Adding Hatzigeorgiou's scanning approach [9] they increased the accuracy to 
94.4%. 

Huiqing and colleagues [14] used k-gram amino acid patterns, top-ranked features 
and a classification SVM model or ensembles of decision trees to predict the TIS, 
improving the results of Zeng et al. [13]. 

Haifeng and Tao [15] introduced a class of new sequence-similarity kernels based 
on string edit, edit kernels, for use with SVMs. Moreover, they converted the region 
of an input mRNA downstream sequence into an amino acid sequence before 
applying SVMs. Accuracy, sensitivity and specificity were 99.9%, 99.92% and 
99.82%, respectively, using 30 upstream bases and 180 downstream bases. 

Tzanis and colleagues[16][17][18] also rely on characteristics to detect TIS and 
reach an accuracy level of 96.25% extracting them from a window of 99 upstream 
nucleotides and 99 downstream nucleotides from ATG. 

Here we evaluate the use of Smote on the improvement of the SVM classifier. 
Moreover, we concentrate the analysis on a small window and we use the reviewed 
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Mus musculus and Rattus norvegicus RefSeq sequences downloaded from the 
National Center for Biotechnology Information as the analysis data. As a result we have 
attained accuracy, precision, sensitivity and specificity values of 99% on average. 

2   Methods 

Our methodology consists of five phases: (1) the choice of the database that should 
be analyzed; (2) the choice of the codification to be used; (3) the execution of the 
data balancing; (4) the choice of the classifier that offers a good performance in 
this classification; and, finally, (5) the choice of measurements of performance to 
be used. 

2.1   Database 

Sequences from Mus musculus and Rattus norvegicus were downloaded from 
RefSeq NCBI ftp site. Entries not containing at least 12 upstream bases from the 
TIS were discarded. From the six levels of confidence available (reviewed, 
provisional, predicted, validated, model and inferred) only the reviewed sequences 
were used. Negative patterns were extracted registering whether they were in 
frame or out of frame with respect to the TIS, or if they were upstream or 
downstream TIS (cf Fig. 1). 

 

Fig. 1. Construction of the positive and negative patterns using 24 nucleotide windows (12 
nucleotides in the upstream region and 12 in the downstream region) with an ATG codon 
starting at the 13th position 

Table 1. Negatives Patterns extracted from RefSeq sequences. Of the negative examples in the 
training, only those that are out of frame were considered. 

Organism Position and in (IF) or out (OF) of frame 
 5’IF 5’OF 3’IF 3’OF 

Mus musculus  96 221 3990 6943 
Rattus norvegicus 15 35 485 900 
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A dataset of 182 and 42 positive patterns (TIS) and 7164 and 935 negative patterns 
(pseudoTIS out of frame) were obtained from Mus musculus and Rattus norvegicus, 
respectively, distributed according to position and frame as shown in table 1. 

2.2   Binary Codification 

Bases were codified as: A=0001, C=0010, G=0100 and T=1000. Outputs were set 
equal to 1 for the TIS and 0 for pseudoTIS (negative pattern). A complementary  
codification was created which used joint bases (tri-nucleotides) instead of individual 
ones: AAA=000000, AAC=000001, AAG=000002, AAT=000003 and so on. Tri-
nucleotides were positioned in frame to the candidate ATG. In other words, instead of 
codifying base by base, the codification was done by tri-nucleotides with the intention 
of reducing the number of inputs to the SVM and consequently reducing the 
processing time. 

2.3   Class Balance 

The Smote algorithm described by Nitesh [3] was used for replication of examples 
from the minority class. In other words, examples of the minority class were 
interpolated between examples of the sample, resulting in classes with an equivalent 
number of patterns. The dataset used here showed an initial imbalance in the average 
proportion of 1:28 for TIS:pseudoTIS patterns. 

2.4   Support Vector Machine 

Characterized as a machine learning algorithm capable of resolving linear and non-
linear classification problems, the main idea of classification by support vector is to 
separate examples with a linear decision surface and to maximize the margin of 
separation between the other training points [19][20][21][22].  

The SVM works as follows: Given a set of training data{ }N

iii yx 1, = , each with an 

input vector 
n

ix ℜ∈ and corresponding binary output { }1,1 +−∈iy , the objective 
is to separate the class -1 vectors from the class +1 vectors. 

The SVM light version implemented by T. Joachims [23] and available at 
http://svmlight.joachims.org was used here. A 4th order polynomial function was adopted. 

2.5   Efficiency 

Four parameters were applied to measure efficiency and these are represented by the 
formulas below. We evaluated accuracy, precision, sensitivity and specificity. 
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where, TP = true positive, TN = true negative, FP = false positive and FN = false 
negative. Thus, accuracy is the proportion of all predictions that are correct; precision 
is the proportion of the apparent TIS that are indeed TIS; sensitivity refers to the 
proportion of TIS correctly classified as TIS, while specificity is the proportion of 
pseudoTIS correctly classified as pseudoTIS. 

2.6   Validation 

All results were obtained using 5-fold cross validation [24]. In other words, the 
dataset was divided into five groups.  Four groups were used for training and the fifth 
one was reserved for testing.  The procedure was repeated for the four training groups 
and results were averaged, the standard deviation then being calculated. 

3   Results and Discussion 

3.1   Window Size 

Two distinct windows sizes were chosen for comparison, both of them symmetrically 
flanking the TIS. Results are shown in table 2. Additional variations have been tested 
(data not shown) but the 12+12 combination was shown to yield results that are 
similar to larger windows. 

Results indicate that a sequence of 12 upstream bases and 12 downstream bases 
of the TIS is sufficient to obtain a good level of efficiency. This is remarkably 
important for sequences where few bases surrounding the putative TIS are  
 

Table 2. Efficiency as a function of window size flanking the TIS 

 windows 12 + 12 windows 99 + 99 
Mus musculus 

 Mean Std deviation Mean Std deviation 
Accuracy 98.79 0.26 98.83 0.60 
Precision  97.69 0.54 97.81 1.14 
Sensitivity 99.95 0.07 99.90 0.12 
Specificity 99.32 0.12 98.83 0.60 

Rattus norvegicus 
 Mean Std deviation Mean Std deviation 

Accuracy 99.73 0.14 98.38 0.80 
Precision  99.58 0.24 99.02 1.60 
Sensitivity 99.88 0.17 99.31 0.20 
Specificity 99.73 0.14 98.86 0.02 
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available. Moreover, as the number of entries for the classifier increases linearly 
with the number of bases used, processing time is optimized. For example, in the 
Mus musculus base, the processing time is 7.3 lower if we use 12+12 sized 
windows.  This can be of fundamental importance if we are working with much 
larger bases than this. 

3.2   Codification 

Table 3 presents a comparison between two options for codification. While binary 
codification is the most commonly used in the literature, we proposed a codification 
joining all three bases (tri-nucleotides) flanking the TIS, similar to a codon. Note that 
this procedure is not used as a sliding window. 

Table 3. Efficiency obtained as a function of the codification used 

 Codification by tri-nucleotides Codification by base 
Mus musculus 

 Mean Std deviation Mean Std deviation 
Accuracy 98.79 0.26 99.99 0.01 
Precision  97.69 0.54 98.58 0.24 
Sensitivity 99.95 0.07 99.88 0.11 
Specificity 99.32 0.12 99.02 0.14 

Rattus norvegicus 
 Mean Std deviation Mean Std deviation 

Accuracy 99.73 0.14 97.23 0.14 
Precision  99.58 0.24 98.32 0.54 
Sensitivity 99.88 0.17 98.89 0.20 
Specificity 99.73 0.14 99.20 0.16 

These results show that the codification proposed here yielded accuracy levels close to 
those obtained with the standard codification using individual bases. It is noteworthy that 
the new codification reduces the number of entries by half, resulting in a reduction of the 
size of the input file that could be compatible with implementation in most regular 
desktop computers. It should be remembered that with the Mus musculus base, the 
processing time is 19.09 lower if we use codification by tri-nucleotides. This gain, added 
to the gain from the window size, can make a great difference in much larger bases than 
the ones used in this project. 

3.3   Selection of PseudoTIS Patterns Used for Training 

Considering that the balance in favor of pseudoTIS patterns is high, a possible way to 
decrease the contamination of pseudoTIS with some positive patterns is to discard 
those pseudoTIS that are in frame with the TIS. In reality, some proteins may have 
two in frame TIS. Results shown in table 4 support the elimination of in frame 
pseudoTIS from the training step. 
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Table 4. Efficiency as a function of selection of pseudoTIS patterns used for training 

          In frame          Out of frame 
Mus musculus 

 Mean Std deviation Mean Std deviation 
Accuracy 90.88 3.79 98.79 0.26 
Precision  84.75 7.34 97.69 0.54 
Sensitivity 96.92 2.74 99.95 0.07 
Specificity 74.25 10.60 99.32 0.12 

Rattus norvegicus 
 Mean Std deviation Mean Std deviation 

Accuracy 92.88 5.02 99.73       0.14 
Precision  82.34 7.06 99.58       0.24 
Sensitivity 97.26 1.03 99.88       0.17 
Specificity 72.05 12.90 99.73       0.14 

The efficiency of the classifier is clearly reduced by using negative patterns that are in 
the same reading frame as the TIS . Additionally, we have analyzed all out of frame 
pseudoTIS with both 5’ out of frame pseudoTIS and 3’ out of frame pseudoTIS, and 
concluded that the best results are obtained using all out of frame pseudoTIS, regardless of 
their position with respect to the TIS (upstream or downstream). 

3.4   Class Balance 

All results described have made use of Smote. The importance of this procedure is 
illustrated by the data shown in table 5. Without class balancing, efficiency is greatly 
reduced. 

Table 5. Efficiency as a function of balancing method 

 Without Smote With Smote 
Mus musculus 

 Mean Std deviation Mean Std deviation 
Accuracy 98.50 0.24 98.79 0.26 
Precision  82.01 9.24 97.69 0.54 
Sensitivity 51.11 11.48 99.95 0.07 
Specificity 93.60 2.60 99.32 0.12 

Rattus norvegicus 
 Mean Std deviation Mean Std deviation 

Accuracy 96.45 0.23 99.73 0.14 
Precision  90.30 1.35 99.58 0.24 
Sensitivity 56.43 15.56 99.88 0.17 
Specificity 95.30 1.68 99.73 0.14 

Remarkably, sensitivity increases from 51% to 99.95% and from 56% to 99.88% in M. 
musculus and R. norvegicus, respectively. 
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3.5   Scanning Model 

It is desirable to know the frequency of all pseudo TIS classified as negative and the 
TIS classified as positive for the entire population of molecules. Moreover, by 
random chance a negative pattern may simulate a functional TIS, although this might 
be a rare event, and such patterns are likely to occur downstream of the TIS. Thus, 
only one positive prediction should occur per molecule during a scan that starts from 
the 5’ extremity. This prediction schedule was introduced by Agarwal e Bafna [25] 
and later used by Hatzigeorgiou [9] and others [13] [14]. To address this model, we 
examined whether or not a given molecule possesses only negative patterns in the 
upstream region of the actual TIS, and, furthermore, if it was predicted as positive. 
This index was calculated for Mus musculus and Rattus norvegicus, respectively, as 
95.87 +/- 1.23 percent and 98.54 +/- 1.89 percent, using the proposed conditions 
(12+12 window, codification by tri-nucleotides, out of frame pseudoTIS, Smote). 
These settings yielded even better results than the other variations (data not shown). 

3.6   False Positive TIS 

An analysis of the frequency of each base flanking TIS suggests that false positives 
selected by the above method (fig. 2c), although not entirely reproducing the pattern 
shown for true positives (fig. 2a), do not approach the random distribution that is peculiar 
to true negatives (fig. 2b). Fig. 2a shows the typical Kozak consensus which obeys the 
rules for position -3 (purine) and +4 (guanine) and which has a high frequency of G in 
position -6. Clearly, as seen for the true positive, false positive patterns do not 
demonstrate a random distribution pattern for the frequency of bases. This shows that the 
classifier ranks the false positive patterns separately from the negative ones. 

 

Fig. 2. Analysis of the frequency of (a) positives, (b) negatives and (c) false-positive sequences, 
for each position 

a) 
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Fig. 2. (continued) 

4   Perspectives and Future Work 

The SVM classifier used under the conditions evaluated here shows remarkable 
advantages over other similar implementations. Binary codification by tri-nucleotides 

c) 

b) 
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decreased the size of the input file and the time of analysis. The use of out of frame 
negative patterns is a simple implementation that provides good results. Class 
balancing has played an important role in the improvement of the training step and 
Smote has adapted well to the problem of TIS prediction. Some issues remain to be 
addressed and are being investigated. Is it possible to train the classifier with 
sequences from a given organism to analyze cDNA sequences from a new organism? 
Furthermore, what is the minimum number of sequences needed to reduce the 
standard deviation of the predictions to an acceptable level? Are gene predictors used 
to generate RefSeq prediction sequences accurate? Now that TIS prediction with 
SVM has been set up under the parameters described here, these questions, amongst 
others, can now be asked and answered. 
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Abstract. Evidences that non-coding RNAs exert functions in organisms 
accumulate in the literature. Both computational predictions and experimental 
results have shown that, albeit not coding for a protein product, these transcripts 
play roles as diverse as catalytic activities and complex gene regulations, 
suggesting its therapeutic potential when applied to the study of pathogenic 
organisms. A target for such approach is the fungus Paracoccidioides 
brasiliensis (Pb), the ethyological agent of paracoccidioidomycosis, whose 
transcriptome has recently been elucidated. This work reports the compiling of 
a large training set and implementation of a framework of programs for 
sequence feature extraction, generating input for a Support Vector Machines 
algorithm for characterizing the coding potential of transcripts from a 
transcriptome. 

Keywords: non-coding RNA; ncRNA; Paracoccidioides brasiliensis; transcri-
ptome; Support Vector Machines; machine learning. 

1   Introduction 

Transcriptome sequencing projects generate a wealth of information, most of which 
must be analyzed and interpreted in the light of bioinformatics studies. Accordingly, 
the quality and quantity of data to be extracted from these projects are limited by the 
current theoretical models and paradigms, and by the repertoire of available 
computational tools for analysis. 

For a long time the main focus of these projects was the mRNA, carriers of the 
information necessary for coding proteins. It was not until recently that the focus also 
included non-coding RNAs (ncRNAs), a class of functional molecules present in all 
Kingdoms of life, with varied activities such as protein transport, gene regulation, 
silencing, imprinting, among others [1]. Although the ncRNA biological model 
quality has evolved considerably, the ncRNA study is neither an easy task, nor is it 
well established, regardless of the approach. Computational methods are impaired by 
the absence of obvious intrinsic or extrinsic ncRNA signals, which could possibly 
allow for reliable labeling of a transcript as non-coding, and also the need for 
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appropriate tools, exploiting not only sequence comparison but also secondary 
structure motifs and other important RNA properties. 

Despite the lack of standard tools for identifying ncRNAs (like BLAST stands for 
mRNAs), perhaps the most successful computational field in the task of screening for 
new ncRNA is the machine learning, specially the Support Vector Machines (SVMs). 
This algorithm uses features from known examples to derivate a model for predicting 
characteristics of unknown data, unseen during the training phase [2]. This strategy 
has already been successfully employed for the prediction of several ncRNA species, 
such as siRNAs, miRNAs and snoRNAs. This work discusses the adaptation of the 
method to the problem of identifying specifically the ncRNA mRNA-like, which are 
transcripts of variable sizes, stabilities and functions, commonly found mixed with 
mRNAs on transcriptome analyzes. To this end, features extracted from a training set 
containing known examples of both ncRNA and mRNA are provided for a SVM 
program for later predicting, in a transcriptome context, which transcripts are most 
likely coding and non-coding. 

The present work reports the initial steps for constructing the algorithm, 
comprising the assembly of the training set, its pre-processing and the formulation of 
the attributes to be extracted. As a benchmarking procedure, the trained algorithm will 
be used to classify transcripts from the Paracoccidioides brasiliensis (Pb) fungus [3]. 
Once optimized, there is interest in making the algorithm available for analyzes of 
transcriptomes from both eukaryotic and prokaryotic organisms, as there were no 
phylogenetic filters imposed during training set construction. 

2   Materials and Methods 

2.1   Training Set Construction 

The training set consists of a positive set, comprising known mRNA (protein-coding) 
sequences, and a negative set, which contains known ncRNA (non-protein-coding) 
sequences. The positive set was built as follows. A file with the Swiss-Prot database 
version 50.8 was downloaded in October, 2006. The FASTA file containing 234,112 
protein sequences had its redundant sequences (>70% similarity in length) eliminated 
using the CD-HIT program. PERL scripts were used to parse the Swiss-Prot IDs from 
the remaining sequences, which in turn were used to recover its corresponding cDNA 
ID from the nucleotide database EMBL. The cDNA IDs were then submitted to the 
EBI dbFetch service, which allow retrieving sequences. The resulting nucleotide 
database is again submitted to elimination of redundancy through the program 
BLASTCLUST, and the remaining sequences have their ORFs determined by the 
program ORFPredictor. Then, the positive set is split in two: dbCOD_N, consisting of 
transcripts with predicted ORFs, and dbCOD_P, comprising the predicted proteins. 

The negative set was built in a similar way. Files containing sequences from the 
NONCODE, RNAdb and Rfam databases (version October, 2006) were downloaded, 
joined and formatted. The FASTA file containing 265,691 ncRNA sequences had its 
redundancy eliminated through BLASTCLUST, and the remaining sequences had its 
ORFs predicted using ORFPredictor. The nucleotide sequences comprised the 
dbNC_N set, and its predicted protein products, dbNC_P. 

The training set construction is summarized in Figure 1. 
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Fig. 1. Training set construction scheme. Vertical arrows denote sequential steps; horizontal 
pointing arrows indicate discarding of specified elements. 

2.2   Feature Vector 

A feature vector is the assembly of several attributes, arbitrarily selected by the 
researcher, which describe the data in some way.  

Table 1. Selected features, corresponding feature extraction programs and amount of variables 
allocated to each attribute. Qualitative features are shown already quantified. 

Feature description Program Variables 
1. Nucleotide composition SVM_inputter.pl 84 
2. ORF length SVM-inputter.pl 4 
3. Amino acid composition SVM-inputter.pl 20 
4. Protein isoelectric point iep (EMBOSS) 1 
5. Protein complexity CAST 1 
6. Protein intrinsic unfolding FoldIndex 1 
7. Protein functional domains ProSite Scan 1 
8. Known homolog proteins BLAST 1 
9. Mean protein hydropathy SVM-inputter.pl 1 
10.Protein secondary structure SSPro 4.0 3 
11.Protein solvent accessibility ACCPro 4.0 1 

 

In this work, the features where chosen based on their value to represent some  
aspects from a typical non-coding transcript or from a real protein. It is expected that 
a putative translation from a ncRNA carries many unlikely properties, which, when 
combined and analyzed together, may allow for its identification as a “false” protein. 
On the other hand, features extracted from the transcript sequence may help to 
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identify motifs related to ncRNAs. In this work, 11 attributes were selected and 
encoded as 118 numerical variables. 

Table 1 delineates the feature vector composition. 
All extracted feature values were input to SVM_inputter.pl, a PERL script that 

normalizes all values and fits them to the SVM input format. 

2.3   Support Vector Machines Algorithm Settings 

LIBSVM v2.84 was chosen, set as C-SVM (classification problem), binary (two-
classes), with the RBF Kernel. This setting is broadly adopted in similar problems. 

3   Results and Perspectives 

Currently, the training set contains 126,039 sequences formed from joining dbCOD 
and dbNC.  Several strategies are being tested for reducing the size of the set without 
loss in generalization capacity of the algorithm. Attribute extraction is already 
underway. A pilot experiment of 5-fold cross-validation using a subset of the training 
set with 20,000 instances and only 9 attributes indicates accuracies of up to 91.5%.  
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Abstract. This work presents a preliminary comparative study of some
tools for mapping annotated contigs onto a close-related complete anno-
tated genome. This kind of mapping could help scientists in generating
additional sequences to fill in gaps in finishing genome projects, or even
in getting relevant functional information, specially when annotations of
the complete genome and contigs are available.

Keywords: comparative genomics, mapping contigs.

1 Introduction

Although nowadays genome sequencing is fast and cheap, one of the most difficult
steps in a genome project is closing the gaps. In an usual whole genome shotgun
project, the assembly results in hundreds or thousands of contigs. On the other
hand, when the complete genome of some very related organism has become
available, it is possible, by comparing all the contigs to the complete genome,
to determine the order and orientation of the contigs of the incomplete genome,
besides the approximated distances among them. This mapping of contigs onto
a reference genome could help scientists in generating additional sequences to fill
in the gaps, or even in getting a good set of functional information, enough to
finish off the project without finishing the genome, specially when annotations
of the complete genome and contigs are available.

In this work we present a preliminary comparative study of four tools for
mapping annotated contigs onto a complete annotated genome: NUCmer [7],
PROmer [7], Mega BLAST [13] and EGG [1]. The need for this came from some
attempts to align the contigs of a brazilian isolated of the bacteria Anaplasma
marginale [3], which is being sequenced in state of Mato Grosso do Sul, Brazil,
with the complete genome of Anaplasma marginale str. St. Maries [4]. This
organism is the causative agent of bovine anaplasmosis and is responsible for
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serious economic damage. Our attempts in mapping those contigs using simple
BLAST programs [2] and MUMmer [6], which is the core tool used for NUcmer
and PROmer, showed some significant discrepancies.

2 Methodology

MUMmer [6] is a well-known system to align whole genome sequences based on
suffix trees, an efficient data structure to find all distinct subsequences in a given
sequence. MUMmer has variants for comparing incomplete genomes: NUCmer
and PROmer [7], both using MUMmer as their core alignment engines. NUCmer
is a multiple-contig alignment program. It takes as input two multi-fasta files
representing partial or complete assemblies and returns an alignment of every
sequence contig in the first multi-fasta file to every sequence in the second one.
PROmer translates the DNA to amino acids before comparing the sequences.

Mega BLAST [13] makes use of an optimized greedy algorithm for nucleotide
sequence alignment search, aiming mainly to align sequences that differ slightly.
Mega BLAST is also able to efficiently handle much longer DNA sequences than
the traditional BLAST programs.

EGG (Extended Genome-Genome comparison) [1] makes whole genome pair-
wise comparison by finding all pairs of orthologous genes using BLASTP pro-
gram [2]. The comparison takes all the predicted proteins of both genomes as
input, following an all-against-all fashion and build a bipartite graph, where each
edge represents a pair of orthologous genes, called a match. Formally, a match is
a pair (g, h) of genes whose BLASTP e-values (both ways) are not greater than
10−5 and the alignments include at least 60% of each sequence. When a gene h
is the best BLASTP hit found by g and vice versa, we have a bi-directional best
hit (BBH). Thus, a gene can participate at most of one BBH. When a gene g
found no BLASTP hits on the other genome, we say that g is a specific gene.
EGG has been used successfully in several genome projects [5,8,10,12].

Any strategy of mapping contigs onto a genome is useful only for pairs of very
close-related species and even for those cases it is almost impossible to know a
priori what is the best mapping, due the existence of genome rearrangements.
We have built our methodology for comparing the tools by fragmenting a whole
chromosome in non-overlapping contigs and mapping them onto the same chro-
mosome. This strategy is based on the assumption that any mapping method
should be able to correctly map the contigs onto the genome where they came
from. Table 1 shows the ten genomes we have used in our analysis.

We define a score SM to assess the quality of a mapping M as follows. Given a
chromosome G with coordinates [1 . . . n] and C = {C1 . . . Ck} the set of k contigs
of G, let Pi be the first base of contig Ci in G. Let Xi be the position where
the method M mapped the first base of Ci in G, 1 ≤ i ≤ k, called mapping of
Ci. We call distance of mapping of Ci in G, and denote it by dM,i, the distance
between Pi and Xi, according to the coordinates and both strands of G and
the mapping built by M . Thus, dM,i = |Pi − Xi|. In case of G is a circular
chromosome, dM,i = min{|Pi − Xi|, n − |Pi − Xi|}. The score SM is defined as
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Table 1. Each genome has been randomly broken in 100 or 1000 non-overlapping
contigs, randomly distributed in both strands

100 Contigs 1000 Contigs
Genome Genome Mean size Mean number Mean size Mean number

size of contigs of genes of contigs of genes
Bacillus anthracis Steme 5227293 27283.82 26.8 2937.83 2.14
Buchera aphidicola str. Sg 416380 3396.83 2.15 353.86 0.02
Candidatus blochmannia str. BPEN 705557 4277.46 2.48 439.11 0.03
Escherichia coli W3110 4639675 26832.18 23.56 2575.6 1.58
Haemophilus Influenzae 86 1830138 10575.84 9.08 1076.34 0.37
Helicobacter pylori HPAG1 1667867 8972.54 7.81 893.61 0.25
Streptococcus pneumoniae R6 2046115 10178.93 9.24 1122.82 0.46
Synechococcus sp. CC9605 2606748 12824.09 12.77 1352.16 0.7
Xanthomonas campestris 33913 5175554 28263.98 22.02 2807.84 1.49
Xanthomonas campestris 8004 5076188 27197.52 21.19 2853.62 1.6

the number of distances of mapping dM,i such that dM,i ≤ α · |Ci|, where α
is a factor that allows approximated solutions (not so far from Pi). We do not
consider, in computing SM , the contigs mapped onto the wrong strand and the
ones not mapped at all.

EGG maps proteins of each contig onto the reference genome, namely BBHs,
instead of mapping whole contigs. Thus, we need to translate a set of BBHs
formed by genes of Ci and genes of G into Xi. Formally, let (g, h) be a BBH,
where g is gene of G and h is gene of Ci. We simulate a Cartesian coordinate
system where G and Ci are two horizontal axes and the (x, y)-coordinates of g
and h are given by (xg , 1) and (xh, 0). Xi is calculated by finding a position δ in
G that minimizes the summation of euclidian distances between all BBH-pairs
of genes of G and Ci, considering Ci shifted δ − 1 positions in G. Thus, Xi is
given by the formula below and Figure 1 illustrates two BBHs and the shift δ.

Xi = arg min
δ=1...n

�

all BBHs in Ci×G

�
1 + (xg − xh − δ)2

(xg, 1) (xg′ , 1)

(xh, 0) (xh′ , 0)

n

1

1

|Ci|
Ci

G
δ

Fig. 1. An illustration of two BBHs, (g, h) and (g′, h′), mapped onto G

3 Results and Discussion

Taking as input the set of ten genomes of Table 1, randomly broken into 100 and
1000 contigs, we run the programs considering several values for α. Table 2 shows
the results for α = 0.10 and 0.50. The main evidences from a preliminary analysis
showed us that the problem is easier for larger contigs. For small contigs, EGG
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Table 2. Mean values of SM for the genomes of table 1, considering α = 0.5 and 0.1

1000 contigs 100 contigs
Tools 0.5 0.1 0.5 0.1
Mega Blast 948.4 769.9 84.5 60.0
EGG 399.9 399.9 95.0 95.0
NUCmer 993.5 993.5 100.0 100.0
PROMER 995.5 995.5 100.0 100.0

could not correctly map all of them, since it is based in gene mapping, and those
genes could not be present in the contigs. NUCmer had a better performance
with larger contigs. On the other hand, for larger contigs Mega BLAST presented
bad results, because small local aligments may occur also in other locations of the
reference genome. Finally, PROMER presented the best results in all situations,
suggesting that translation of the contigs may help the whole mapping.

This is an initial analysis and much remains to be done. One next step is to
improve the time-consuming algorithm for mapping contigs from BBHs. Another
step is to include misleading bases and also repeats into the contigs, in order to
simulate more real situations in the mapping problem. Also, the building of a
new mapping tool, including the use of scaffolds [9] when they are available, may
be promising, since scaffolds may come with a partial order of the contigs and
approximated distances among them. This analysis is part of a bigger project
that includes, among others, additional analyses and some tools for compar-
ing genomes (http://egg.dct.ufms.br/projects). This web site also presents
graphical display of some mappings using GBrowse [11] environment.
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Rio de Janeiro, RJ - Brasil

{capriles,dardenne}@lncc.br

Abstract. Nearly 100 years after the discovery of Trypanosoma cruzi,
the parasitic agent of Chagas’ disease, there are no appropriate thera-
pies that lead to cure the acute or the chronic phases of this disease.
Among the enzymes of T. cruzi, already considered as molecular tar-
gets for Chagas’ disease treatment, the cysteine proteases had been ex-
tensively studied by experimental approaches. In the present work, the
isoforms 1 and 2 of cruzipain were investigated by molecular dynam-
ics simulations (MD) at 25◦C and 37◦C temperatures, using as control
papain, the representative enzyme of cysteine proteases family C1. The
main results showed that the presence of a negatively charged amino acid
at the 158 position (papain numbering) in the catalytic site, could in-
duces a structural reorganisation, susceptible to temperature variations,
in the catalytic residues CYS25 and HIS159.

Keywords: Molecular Dynamics Simulations (MD), Trypanosoma cruzi,
Cruzipains and Cysteine Proteases.

The protozoa Trypanosoma cruzi, parasitic agent of Chagas’ disease, is endemic in
South and Central America and in Mexico [1], with some related cases in Canada,
UnitedStates andEurope [2].TheChagas’ disease affects approximately 18million
people with 21,000 dies per year, and at least 100 million persons are exposed to
the risk of infection [3].

Nearly 100 years after the discovery, there are no appropriate therapies that
lead to cure this disease in the acute or the chronic phases.The incidence, the death
rates, the drugs toxicity, linked to the parasite ability to develop drug resistance[4],
reinforces the importance of developing new chemotherapy against Chagas’ dis-
ease. Studies of physiologic and biochemical properties from T. cruzi, have shown
some enzymes as potential molecular targets for the development of new drugs. In
drug design studies, the investigation of the dynamical behaviour of an enzyme and
its active site can contribute significantly to the development of a new inhibitor [5].

Among the enzymes of T. cruzi, already considered as molecular target for Cha-
gas’ disease treatment, the cysteine proteases had been extensively studied by ex-
perimental approaches. The lysosomic enzyme cruzipain, is the major cysteine
protease of T. cruzi, whose main functions are the cellular differentiation of the
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parasite and the host cell invasion. The analysis of electrostatic properties in the
catalytic site of cruzipain, showed that its catalytic activity is linked to the ex-
istence of a very particular electrostatic environment, tha is responsible for the
formation and stabilisation of the ionic pair CYS25− · · ·HIS162+, as showed in pa-
pain [6]. It has been proposed that the catalytic activity of cruzipain wouldbe mod-
ulated by structural alterations in the catalytic site, as well as by the presence of a
possible allosteric site. The regulation of this allosteric site would be conditioned
to the temperature, being inhibited by excess of the substrate at 25◦C (tempera-
ture found in the invertebrate vector), disappearing at 37◦C (temperature found
in the vertebrate host) [7].

In the present work, the isoforms 11 and 22 of cruzipain were investigated by
molecular dynamics simulations (MD), at 25◦C and 37◦C temperatures, using as
control papain3, the representative enzyme of cysteine proteases family C1.

The 10 ns of MD analysis (after 1.5 ns of equilibration) were performed by the
GROMACS program (version 3.2.1) in double precision, using the GROMACS
force field [11]. The systems of 9PAP, 1ME4 and 1ME4m were immersed in a water
cubic boxes, considering a solvatation shell with at least 10Å in each dimension of
the macromolecule, using the SPC (Simple Point Charge) water model, and they
were neutralised adding, 10Cl−, 11Na+ and2Na+, respectively. For the treatment
of the Coulomb potential, it was used the Reaction Field method with a Rc = 16Å
cutoff and a εrf = 54 dielectric constant. For the Lennard-Jones potential it was
used a Rc = 14Å cutoff.

The analysis of RMSD (Root Mean Square Deviation) and RMSF (Root Mean
Square Fluctuation) showed that the secondary structure and the backbone or-
ganisation remain stable along all the simulations for papain and cruzipains 1 and
2. These results do not corroborate the hypothesis of the existence of an allosteric
site. However, the monitoring of distances and positions of the side chains of the
catalytic residues CYS25, HIS159 and ASN175 and the residue in position 158 (pa-
pain numbering), showed important alterations in the structural organisation of
the catalytic site (Fig. 1).

In the papain, the imidazole ring of HIS159 suffered a “bend”, when simulated
at 37◦C. Probably, this occurred due the lost of the hydrogen bond (HB) between
HIS159:NE2 and ASN175:OD1, favouring the electrostatic interaction between
HIS159:NE2 and ASP158:OD2, with the formation of a new HB. This conforma-
tional alteration favours the entrance of one water molecule in the catalytic site,
establishing a HB with ASN175:OD1.

In cruzipain 1, this “bend” phenomenon occurred in both temperatures simu-
lated. At 37◦C, it was also observed a 180◦ rotation of the HIS162 imidazole ring,
with the formation of the hydrogen bonds CYS25:SG· · ·HIS162:NE2 and HIS162:
ND1· · ·ASP161:OD2.

1 Crystallographic Structure of Cruzipain 1 - PDB: 1ME4 (1.20Å of resolution) [8].
2 Structural model of cruzipain 2 (1ME4m): obtained by comparative modelling (by

Modeller program - version 8.0): (i) sequence target - GenBank: M90067 [9]; (ii) tem-
plate sequence - the crystal structure of cruzipain 1 (PDB: 1ME4).

3 Crystallographic Structure of Papain - PDB: 9PAP (1.65Å of resolution) [10].



160 P.V.S.Z. Capriles and L.E. Dardenne

cr
y
st

al
/

m
o
d
el

25
◦
C

37
◦
C

9
P
A

P

1
M

E
4

1
M

E
4
m

†
T
re

a
tm

en
t

o
f
th

e
ch

a
rg

e
o
f
C

Y
S
2
5
:
C

B
=

−
0
.2

a
n
d

S
G

=
−

0
.6

.
T

h
es

e
re

p
re

se
n
ta

ti
v
e

co
n
fo

rm
a
ti
o
n
s

w
er

e
o
b
ta

in
ed

fr
o
m

th
e

cl
u
st

er
in

g
m

et
h
o
d

(g
cl

u
st

er
d

fu
n
ct

io
n

in
G

R
O

M
A

C
S

p
ro

g
ra

m
-
v
er

si
o
n

3
.2

.1
)

[1
1
]
u
si
n
g

a
s

cu
t-

o
ff

a
n

R
M

S
D

=
1
.7

5
Å
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The structure of the ionic pair in cruzipain 2 remained stable along the 10 ns
of the MD simulation, in both temperatures. It is important notice that in cruzi-
pain2 occurs the substitution of the negatively charged amino acid ASP161 by a
neutral one SER161, what would provide a stabilisation of the usual HB interac-
tions CYS25:SG· · ·HIS162:ND1 and HIS162:NE2· · ·ASN182:OD1.

The MD studies presented in this work, showed that the presence of an acidic
residue in position 158 (papain numbering) of the catalytic site, can induces a
structural reorganisation, susceptible to temperature variations, of the catalytic
amino acids in cysteine proteases from the papain family. This structural reorgan-
isation generates a conformation similar to the one found in serine proteases with
the catalytic triad SER−HIS−ASP, and also similar to a serine proteases with the
mutation SER→CYS, as presented in the PDB: 1GNS [12].
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Fábio L. Custódio, Hélio J. C. Barbosa, and Laurent E. Dardenne
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Abstract. The determination of the three-dimensional structure of a
protein is one of the most challenging problems of modern science. A ge-
netic algorithm (GA) was developed to find low energy conformations un-
der an atomist protein model. A crowding method was used for parental
replacement. The comparison criterion between individuals was the ab-
solute RMSD of the Cβ positions’ of the residues. The GROMOS96 force
field potential energy function was used to evaluate the energy of the con-
formations. We tested the performance of the GA against poly-alanine
sequences of lengths 18 and 23 in a situation where the global minimum
was an alpha helix, and also when it was some other compact structure.
The GA proved very efficient by having a 100% success ratio in find-
ing both the global minimum and the alpha helix conformation in all
situations.

Keywords: genetic algorithm, multiple minima, protein structure pre-
diction.

1 Introduction

The function of a protein is determined by its structure, and to be able to predict
the native structure of a protein would help unleash the potential of the large
amount of biological sequences information that is being generated by genome
projects. Furthermore, the determination of the three-dimensional structure of
a protein from first principles is one of the most challenging problems of modern
science.

From the point of view of the development of effective optimization algorithms
the protein structure prediction problem is associated with two closely related
crucial aspects: (i) the problem involves thousands of degrees of freedom and
correspond to the exploration of highly complex energy surfaces, and (ii) from
the physical point of view, the ideal cost function involves approaching the sys-
tem at the atomic level and determining Gibbs’ free energy, which requires the
computation of the system’s entropy as a whole (molecular system + solvent).
Its determination, even approximately, leads to extremely costly computations
using molecular dynamics techniques. The current impossibility of treating both
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aspects above in a computationally feasible way leads to the introduction of sim-
plifications in order to reduce the number of degrees of freedom of the system,
and specially to reduce the complexity of the cost function adopted. From the
practical point of view, one is dealing with an extremely complex problem using
a cost function that frequently does not guarantee that the biologically relevant
structure (experimentally found using X-ray diffraction in crystals or NMR tech-
niques) is the global minimum of the hypersurface being investigated. Atomistic
models usually rely on empirical potential functions, composing a force fields,
which models the many different interactions between the atoms of the protein
and the solvent. There is a reasonable degree of uncertainty and it is common
that a given function, together with its parameters, is only efficient in describing
a particular set of macromolecules under specific circumstances. In this work we
used the GROMOS version 96 [1] force field. The fitness function has important
approximations (e.g. absence of entropic and solvent effects) which translate in
doubts about the biological relevance of the lowest energy conformation. From
that comes the importance of using a search methodology capable of simultane-
ously exploring multiple minima on the energy hypersurface to, at the end of a
single run, obtain not only the global minimum, but other local minima as well.

2 Objectives

Our objectives were to develop a genetic algorithm [2] capable of finding multiple
low energy structures for an atomic protein model, and access the performance
of the GA using poly-alanine sequences as test cases.

3 Methodology

Poly-alanine sequences of lengths 18 and 23 were tested and the results were
analyzed from the statistics of 30 independent runs. Those lengths were chosen
because they are at the required range for a poly-alanine to fold to a stable
helical structure [3]. Using only alaline residues in this first approach has the
advantage of reducing complexity as one does not need to change residues’ side
chains conformations. A maximum of 500,000 function evaluations were allowed
with a population of 200 individuals. Two cases of the fitness function were used:
(i) a dielectric constant of two (non-polar solvent) with the carboxyl and amine
terminals neutralized; (ii) a sigmoidal dielectric function with charged terminals.

3.1 The Genetic Algorithm

Candidate structures were encoded in a vector containing the backbone dihedral
angles (φ, ψ and ω). The operators used were: two-point crossover, multiple-
point crossover operator, random mutation, incremental mutation, compensat-
ing mutation and contiguous torsion angles exchange. The crossover points were
chosen at random as were the mutation’s positions. At the beginning of each
run all the operators had the same application probability (the sum was always
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normalized to 100%). An adaptive scheme was used to derive new probabilities
based on operator’s performance [4]. All operators were applied to the dihedral
angles, but the energy function was evaluated using Cartesian coordinates. The
list of torsion angles (internal coordinates) was translated to Cartesian coordi-
nates using constant bonds distances and angles. Multiple Solutions The energy
landscape of the model studied has a large number of low energy basins. Some
basins lead to a native state energy (structures with biological significance), but
others do not (energy traps). Nevertheless different basins may exhibit struc-
tures with similar energies, but with different structural motifs. An algorithm
able to simultaneously explore multiple basins is particularly useful on such com-
plex models, especially because there are doubts about the energy function. A
crowding population replacement strategy was used to maintain good diversity
on the population and, at the same time, find multiple low energy solutions.
Newly generated conformations competed with the most similar in the previous
population. The similarity criteria used was the root-mean-squared-deviation of
the internal distances between the beta carbons of all residues.

4 Results and Discussion

The GA exhibited the same performance on the sequences of length 18 and 23.
Using the dielectric constant of two, the coulomb potential is calculated as if the

Fig. 1. (A) 23-ALA Alpha helix configuration: lowest energy conformation using a di-
electric constant of two with the carboxyl and amine terminals neutralized. (B) Lowest
energy conformation of 23-ALA with charged carboxyl and amine terminals using a
sigmoidal dielectric function.
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protein is inside a non-polar environment; this has the effect of exaggerating the
electrostatic interactions. Thus it is necessary to neutralize the charged peptide
terminals. Under these circumstances, the global energy minimum is an alpha
helix structure [5] (Fig.1, A). The GA was able to find with a 100% success rate
the alpha helix conformation.

When using a sigmoidal dielectric function [6] and the charged terminals,
the global energy minimum is a compact conformation (Fig.1, B) with alpha
helix parts and the terminals near to each other. This provides an excellent test
situation to assess the ability of the GA in finding structures with biological
relevance when they are not the global energy minimum. In all of the runs,
the final population contained several structures similar to the global minimum
(RMSD < 2.0Å) and a series of structures in alpha helix conformation. These
helixes structures had an energy about 9 Kcal/mol higher than the compact
conformations.

The presented GA was at first developed for the HP model [7,8] and we
adapted it to the atomist model. The algorithm was efficient in finding low en-
ergy structures for poly-alanine. The five residue difference on the length did
not affect the performance of the algorithm. The crowding parental replacement
allowed the GA to simultaneously explore multiple minima, avoiding prema-
ture convergence caused by local minima traps, and allowed the GA to find the
biological relevant structure even when it was not the global minimum.
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Extended Abstract 

The pharmaceutical industry is hunting for high-affinity inhibitors of medical targets, 
but most of them fail in clinical trials because of severe side effects. On the other 
hand, there is a growing knowledge about multiple targets and their role in various 
signalling pathways. Therefore, the integration of experimental data, literature 
knowledge about drugs, targets, their metabolism, ontology, and related pathways is 
an important task to achieve better understanding of drug mechanisms on a systems 
biological level. 

To this end we have compiled a database allowing complex queries that project 
various types of information onto 2,500 WHO-classified drugs [1]. Currently, the 
database contains about 3,000 target proteins that are annotated by more than 8,000 
literature-based and manually curated drug-target relations. The use of the 
Anatomical-Therapeutical-Chemical drug classification (ATC-code) [2] enables easy 
access to medical indications or diseases and links phenotypic data to biological 
processes on a molecular level. Integrated Gene Ontology (GO) [3] enables filtering 
of proteins associated to particular molecular functions or cellular components. 
Similarity searching for drugs or targets is implemented via structural fingerprints [4] 
and FASTA-alignments. Structural fingerprints are bit-vectors encoding for the 
chemical and topological features of drugs and drug-like compounds. Their similarity 
can be described using the Tanimoto-coefficient (T), considering the concordant and 
unequal bits of two structural fingerprints [5].  

 

NabT
N N Na b ab

=
+ −

. (1) 

 

Na is the number of bits set to 1 in compound a , Nb is the number of bits set to 1 in 
compound b and  Nab is the number of bits common to both, compound a  and b . 

For a more comprehensive approach, the public data from the National Cancer Institute 
on expression and cell effects related to 50,000 compounds are a valuable resource [6]. 
Besides the expression of all 60 cell types in their basic state, data on the changed 
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expression after application of cancer drugs with known mechanism of action are 
deposited.  Moreover, data on mutations and properties of the cell panel of the NCI exist 
[7], which will be useful for the modelling of differences between the cell lines. However, 
NCI-compounds, which show low cell type specificity were excluded. The remaining data 
were normalised by z-normalisation to achieve a comparable level of data and to 
emphasize the differences in the cell specificity. In a next step, the effect on 60 cell lines 
was translated for each compound into a bit-vector of length 4,800. Thus, this cellular 
fingerprint describes the unique pattern of effects of a chemical compound on the NCI60 
cell panel comparable to the structural fingerprint describing the chemical properties of a 
compound. Since the average number of cell lines that respond specifically to a single 
compound is relative low compared to the non-specific cell reactions (about 5/60), an 
asymmetric distance is an appropriate measure. Again, for fast similarity searching, the 
Tanimoto-coefficient was used. 

The exciting question is whether we will find a correlation between structural and 
cellular similarity. If the structural similarity between two compounds correlates well 
with the profile of targets addressed by these compounds, this should be the case. On 
the other hand, it is known that even for compounds with a distinct structural 
similarity (Tanimoto > 85%) only one third exhibits similar effects in the same 
experimental assay [8]. To answer the question for correlation between structural and 
cellular similarity, a clustering of the compounds with similar cellular effects 
regarding their structural similarity was performed (Fig. 1). In general, the vast 
majority of compounds occurs in two or three large clusters, where each cluster 
represents one structural scaffold. Preliminary analysis shows that one cluster of 
compounds can be found addressing the same target (Fig. 2) or compounds that 
address another target in the same pathway. This shows that the cellular fingerprint is 
indicative of target specificity without structural similarity bias. Examples for 
coincidence of structural and cellular fingerprints are presented in Fig. 3. 

 

Fig. 1. Clustering of compounds with similar cellular fingerprint according to their structural 
similarity 

The presented method supports the following goals:  
 

• Prediction of targets and mechanism of action  
Similarity of structural fingerprints allows hypotheses about similar cellular 
fingerprints and vice versa. Experimental data on a sufficient number of cell 
lines allow conclusions about the mechanism of the compound.     
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• Selection of sensitive cell lines   
Known compound profiles (cellular fingerprints) allow the selection of 
sensitive cell lines for in vitro testing of similar compounds.  

• Improved in silico screening   
Cellular fingerprints will improve the in silico similarity screening. The 
combination of both methods enables the identification of ‘scaffold hoppers’, 
compounds with deviating structure but similar cellular effect.  

To validate the correlation between structural and cellular fingerprints experimentally, the 
purchasable natural compounds from the SuperNatural Database [9] are suitable 
candidates. Numerous of them are also described in the NCI-database. It will be important 
to validate predicted cellular fingerprints and target proteins experimentally.   

  
 

  
             2a    2b 

Fig. 2. Compounds with different scaffold exhibit similar cellular fingerprints (Methotrexate, 
2a and Deoxyuridine phosphate 2b). Both compounds bind to the same target protein 
(Thymidilate synthase, green; PDB-code: 1AXW). 

 

Fig. 3. Four compounds with 97% similarity to 7-Chlorocamptothecine and their effect on the 
NCI60 cell panel. Compare Table 1. 

Cell types 
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Table 1. Results of an in silico screening based on cellular fingerprints; the seed of the cluster 
is 7-chlorocamptothecin (NCS-ID 249910) 

NCS-
ID 

Cell. 
Tanimoto 

Struct. 
Tanimoto 

Structure 

249910 100 100 

681634 98.8 87.5 

606986 98.3 87.7 

295501 98.2 96.2 

681635 98.2 86.4 
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Abstract. Coffee is one of the most important commodities worldwide. For this 
reason, the sequencing in large scale of expressed sequence tags (ESTs) from 
different tissues of the coffee tree was performed and resulted in the formation 
of the Brazilian Coffee Genome EST database (CafEST). There is a raising 
interest of genetic breeding programs in developing varieties of Coffea arabica 
with increased resistance to nematodes, pests, and diseases. A high number of 
plant resistance genes (R genes) have already been isolated and classified into 
six categories denoted as class 1 to class 6. In this study, we show results of a 
screening of the coffee transcriptome database for class 3 LLR/NBS/TIR-like R 
gene related sequences within the C. arabica ESTs from the CafEST database. 
Based on searches for sequence similarities, we selected a total of 293 ESTs 
coding for class 3 R proteins, putatively related to disease resistance in C. 
arabica. Among these reads, 101 ESTs, representing the RPP4 subclass, were 
grouped into 56 clusters. We found 93 reads representing the RPP5 subclass, 
which were grouped into 46 clusters. In addition, we also found 99 reads 
representing the RPS4 subclass, which were grouped into 54 clusters. However, 
no matches were found  with other subclasses of R genes (L, M, N, P, and 
RPP1) so far. These studies should contribute to the elucidation of the 
recognition and resistance cascades elicited by R genes. These results may 
provide relevant information to be applied on coffee breeding programs and on 
the development of new strategies to obtain genetic durable resistance for plants 
against pathogens, resulting in positive impacts on the coffee agribusiness. 

Keywords: coffee tree, plant resistance, NBS, LRR, TIR. 

1   Introduction 

Coffee is one of the most important commodities worldwide. Thus, the sequencing in 
large scale of expressed sequence tags (ESTs) from tissues of coffee trees was 
performed as an initiative of the Brazilian Consortium for Resources and 

                                                           
* Corresponding author. 
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Development of Coffee together with the AEG-FAPESP and EMBRAPA Genetic 
Resources and Biotechnology network. Nevertheless, the Brazilian coffee crop is still 
vulnerable to  pest attack, leading to considerable yield losses. 

During evolution, plants developed a number of defense mechanisms against 
pathogens. Besides various preformed barriers, plants also activate resistance at 
species level (i.e., non-host resistance), race-specific resistance, non-race-specific 
resistance, and basal resistance mechanisms. Recognition of the presence of 
pathogens by plants occurs during physical contact between plant and pathogen either 
on the plant external contact surface or inside the plant tissues (Vidhyasekaran, 1997). 
Therefore, the recognition of the pathogen by the plant, which is mediated by protein 
resistance receptors (R proteins), is essential for the induction of local defense 
responses. A high number of plant resistance genes (R genes) has already been 
isolated and was classified into six categories denoted as class 1 to class 6. All the 
class 3 R genes, which present TIR-NBS-LRR domains, possess an N-terminal 
domain resembling the cytoplasmic signaling domain of the Toll and Interleukin-1 
(TIR) transmembrane receptors, such as L, RPS4, RPP1, RPP5, and N (Whitham et 
al., 1994; Meyers et al., 1999; Dangl and Jones, 2001; Tör et al., 2004). TIR motifs 
are ancient. Drosophila Toll and mammalian Toll-like receptors (TLRs) recognize 
PAMPs (pathogen-associated molecular pattern) through the extracellular LLR 
domain and transduce the PAMP signal through TIR domain. Similarly, induced non-
host resistance in plants is comparable to animal innate immunity, which activates 
pathogen resistance following host recognition of these PAMPs general elicitors 
(Jones and Takemoto, 2004). 

We are performing a data-mining-based identification of plant disease R genes in 
the Brazilian Coffee Genome EST database (CafEST). Among over 2,400 reads have 
already been found within this database. In this work, we report the existence of a 
large number of class 3 R genes within the Coffea arabica genome. 

2   Materials and Methods 

To search homologous genes encoding class 3 LLR/NBS/TIR-like R proteins in C. 
arabica genome, comparison analyses were performed within the CafEST database 
(http://www.lge.ibi.unicamp.br/cafe) using the Basic Local Alignment Tool 
(BLASTn) program (Altschul et al., 1997) and nucleotide sequences of each of the 
well described subclasses (L, M, N, P, RPS4, RPP1, RPP4, and RPP5) found in public 
databases (www.nbci.nlm.nih.gov) as query. The use of the cut-off value of 1e-10-4 
and BLOSUM62 matrix criteria led to the selection of 293 EST reads from CafEST, 
which comprises 153,739 valid reads. EST clusters were built for each subclass 
separately, through the alignment by using the Contig Assembly Program (CAP3) 
(Huang and Madan, 1999). Consensus sequences of each cluster were compared with 
the amino acid sequences from protein homologous sequences from the Genbank, by 
using the BLASTx program (Altschul et al., 1997). 

All C. arabica sequences used in this work, corresponding to sequenced EST reads 
and cluster consensus, were obtained from the Brazilian Coffee Genome EST 
database (CafEST), which was built from cDNA libraries for different genotypes, 
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organs (leaf, stem, fruit, flower, and root) or growth and stress conditions, as 
described in detail elsewhere (Vieira et al., 2006). 

3   Results and Discussion 

In this work, we report the presence of R genes encoding class 3 LLR/NBS/TIR-like 
R proteins within the C. arabica ESTs from the CafEST database, which are involved 
in signal perception of non-self effector molecules. Based on sequence similarities in 
homologue searches, using the BLASTn program, we selected a total of 293 ESTs 
coding for putative class 3 R proteins related to disease resistance in C. arabica 
(Table 1). Among these reads, 101 ESTs representing the RPP4 subclass were 
grouped into 56 clusters. We found 93 reads representing the RPP5 subclass, which 
were grouped into 46 clusters. Arabidopsis RPP4 is a member of the RPP5 multigene 
family of TIR-NB-LRR genes and related to downy mildew resistance through 
multiple signaling components (van der Biezenet et al., 2002). In addition, we also 
found 99 reads of RPS4 subclass, which were grouped into 54 clusters. The 
Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family 
of disease resistance genes whose protein recognizes the avrRps4 avirulence gene 
product from Pseudomonas syringae pv. pisi (Hinsch and Staskawicz, 1996; 
Gassmann et al., 1999). However, no hit was found when nucleotide sequences of 
other subclasses of R genes (L, M, N, P, and RPP1) were used as probes for CafEST 
database mining. 

Table 1. Number of putative class 3 R genes found within CafEST database in the Coffea 
arabica genome 

Number of clusters  Gene name Number of 
reads Contigs Singlets 

RPP4 101 19 37 

RPP5 93 17 29 

RPS4 99 18 36 

 
Interestingly, within the clusters of RPP4 (Table 2) we found that the contigs C1, 

C3, C5, C13, C16 and C18 are exclusively formed by reads from a single coffee 
library (data not shown): C1 is formed by 2 reads expressed in leaves treated with 
araquidonic acid; C3 is formed by 2 reads from leaves not treated with Bion; C5 is 
composed by 5 reads from Xylella fastidiosa-infected branches, what suggests the 
involvement of this contig sequence in the basal coffee resistance against this 
pathogenic bacteria; C13 is composed by 3 reads originated from coffee cells 
maintained in saline medium; C16 is formed by 2 reads from root tissue and 
suspension of cells in the presence of Al and the C17 is composed by 3 reads 
originated from seeds during germination. 
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Table 2. Distribution of putative Coffea arabica RPS4-ESTs in clusters and homology analysis 

Contig
Read 
length 

(nt)

Number 
of reads

Best Blast hit

Organism Access number E-value Similarity
C1 831 2 Solanum tuberosum gb|AAP44392.1 2E-56 131/153 (84%)
C2 1579 9 Oryza sativa ref|NP_915900.1 2E-16 156/378 (41%)
C3 736 2 Arabidopsis thaliana ref|NP_200956.1 5E-68 161/245 (65%)
C4 1556 7 Oryza sativa ref|NP_001067154.1 1E-141 312/408 (76%)
C5 779 3 Populus trichocarpa gb|ABF81421.1 1E-20 119/249 (47%)
C6 769 3 Cucumis melo gb|AAT77096.1 2E-15 88/182 (48%)
C7 1282 3 Populus trichocarpa gb|ABF81421.1 1E-27 158/334 (46%)
C8 734 3 Cucumis melo gb|AAT77098.1 6E-08 74/176 (42%)
C9 999 2 Arabidopsis thaliana gb|ABG00804.1 1E-58 171/281 (59%)
C10 900 2 Medicago truncatula gb|ABE84400.1 3E-29 95/164 (57%)
C11 918 7 Capsicum annuum gb|AAN62015.2 2E-68 161/197 (81%)
C12 1552 4 Glycine max gb|AAR19098.1 4E-29 175/397 (44%)
C13 862 3 Capsicum annuum gb|AAN62015.2 5E-52 151/179 (84%)
C14 922 2 Arabidopsis thaliana ref|NP_176532.2 9E-76 182/257 (70%)
C15 1003 2 Arabidopsis thaliana gb|AAM13028.1 7E-67 167/256 (64%)
C16 685 2 Solanum tarijense gb|AAR29076.1 6E-28 122/215 (56%)
C17 798 3 Solanum tuberosum gb|AAW48301.1 6E-09 59/113 (52%)
C18 784 3 Nicotiana benthamiana gb|AAY54606.1 6E-53 145/214 (67%)

 

4   Concluding Remarks 

In this study, the criteria used to screen the CafEST database for ESTs from C. 
arabica that code for R genes class 3 allowed the identification of various putative 
homologous genes to RPP4, RPP5, and RPS4. Taking into consideration that coffee 
plants are perennial, the data shown provide relevant information to be used for 
classical breeding programs as well as for the development of new approaches to 
reach coffee durable resistance against pathogens, leading to positive impact on the 
coffee agribusiness. 
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Capriles, Priscila V.S.Z. 158
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